Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=3abc\)
\(A=\dfrac{a^3+b^3+c^3}{abc}=\dfrac{3abc}{abc}=3\)
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
Có a + b + c = 0
=> a + b = - c
=> (a + b)2 = c2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = - 2ab
Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca
Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab
Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac
=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)
Với a,b,c khác 0 và a+b+c=0 ta có
\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}=\frac{ab}{\left(a+b\right)^2-2ab-c^2}+\frac{bc}{\left(b+c\right)^2-2bc-a^2}+\frac{ca}{\left(c+a\right)^2-2ca-b^2}=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\frac{bc}{\left(b+c+a\right)\left(b+c-a\right)-2bc}+\frac{ca}{\left(c+a+b\right)\left(c+a-b\right)-2ca}=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}+-\frac{1}{2}+-\frac{1}{2}=-\frac{3}{2}\)
Vậy A=-3/2
C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c
=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)
=\(\frac{-3}{2}\)
Bài 1:
a ) a.( b2 + c2 ) + b.( a2 + c2 ) + c.( a2 + b2 ) + 2abc
= ab2 + ac2 + a2b + bc2 + a2c + b2c + 2abc
= ( ab2 + a2b ) + ( ac2 + bc2 ) + ( a2c + 2abc + b2c )
= ab.( a + b ) + c2.( a + b ) + c.( a2 + 2ab + b2 )
= ab.( a + b ) + c2.( a + b )v + c.( a + b)2
= ( a + b ).[ ( ab + c2 + c. ( a + b ) ]
= ( a + b ).( ab + c2 + ac + bc )
= ( a + b ).[ ( ab + ac ) + ( c2 + bc) ]
= ( a + b ).[ a.( b + c ) + c.( b + c ) ]
= ( a + b ).( b + c ).( a + c )
b) ab.( a + b ) - bc.( b + c ) + ac.( a - c )
= ab.( a + b ) - bc.( b + c ) + ac.[ ( a + b ) - ( b + c ) ]
= ab.( a + b ) - bc. ( b + c ) + ac.( a + b ) - ac.( b + c )
= ab.( a + b ) + ac.( a + b ) - bc.( b + c ) - ac.( b + c )
= ( a + b ).( ab + ac ) + ( b + c ).( -bc - ac )
= ( a + b ).a.( b + c ) - ( b + c ).c.( a + b )
= ( a + b ).( b + c ).( a - c )
c) ( x2 + x )2 + 2.( x2 + x ) - 3
Đặt x2 + x = a
Khi đó đa thức trở thành:
a2 + 2a - 3
= a2 + 3a - a - 3
= a.( a + 3 ) - ( a + 3 )
= ( a - 1 ).( a - 3 )
\(\Rightarrow\) ( x2 + x - 1 ).( x2 + x - 3 )
B2
ab.( a - b ) + bc.( b - c ) + ca.( c - a ) = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.[ ( a - b ) + ( b - c ) ] = 0
\(\Leftrightarrow\)ab.( a - b ) + bc.( b - c ) - ca.( a - b ) - ca.( b - c ) = 0
\(\Leftrightarrow\)ab.( a - b ) - ca.( a - b ) + bc.( b - c ) - ca.( b - c ) = 0
\(\Leftrightarrow\) ( a - b ).( ab - ca ) + ( b - c ).( bc - ca ) = 0
\(\Leftrightarrow\) ( a - b ).a.( b - c ) - ( b - c ).c.( a - b ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) ( a - b ).( b - c ).( a - c ) = 0
\(\Leftrightarrow\) a = b , b = c , a = c
\(\Rightarrow\) a = b = c
Ta có: a + b = c <=> a2 + b2 + 2ab = c2 <=> a2 + b2 - c2 = - 2ab
Tương tự: a2 + c2 - b2 = - 2ac
b2 + c2 - a2 = - 2bc
Thế vào ta được
\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}=-\frac{ab}{2ab}-\frac{bc}{2bc}-\frac{ac}{2ac}=-6\)