K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

xet \(\Delta BHI\) va \(\Delta BAE\) co

\(\widehat{BAE}=\widehat{BHI}=90^0\)va \(\widehat{ABE}=\widehat{IBH}\) (BE la pg)

\(\Rightarrow\Delta BHI\simeq\Delta BAE\left(gg\right)\)

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{AE}\)

D,Ta co: \(\widehat{AIE}=\widehat{BIH}\left(dd\right)\)

ma \(\widehat{BIH}=\widehat{BEA}\left(\Delta BHI\simeq\Delta BAE\right)\)

\(\Rightarrow\widehat{AIE}=\widehat{BEA}\Rightarrow\Delta AIE\) can tai A

\(\Rightarrow AI=AE\)

A,\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{IA}\Rightarrow BH.IA=AB.IH\)

B, xet \(\Delta BHA\) va \(\Delta BAC\) co

\(\widehat{B}\) chung, \(\widehat{BAE}=\widehat{BHA}=90^0\)

\(\Rightarrow\Delta BHA\simeq\Delta BAC\left(gg\right)\)

C, Vi \(\Delta BHI\simeq\Delta BAE\)

\(\Rightarrow\dfrac{IH}{AE}=\dfrac{BH}{AB}\left(1\right)\)

Vi \(\Delta BHA\simeq\Delta BAC\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{BA}\left(2\right)\)

Tu (1) va (2)\(\Rightarrow\dfrac{HI}{AE}=\dfrac{AH}{AC}\Rightarrow\dfrac{HI}{AH}=\dfrac{AE}{AC}\)

\(\Rightarrow\dfrac{HI}{AH-HI}=\dfrac{AE}{AC-AE}\Rightarrow\dfrac{IH}{IA}=\dfrac{AE}{EC}\)

cai nay \(\simeq\) la dong dang do nha bn

31 tháng 3 2017

25 tháng 4 2017

Hình thì bạn tự vẽ nha.( Mình k biết cách vẽ hình trên hoc24)

a)Ta có BE là tia phân giác của góc ABC => BE là tia phân giác của tam giác BHA hay BI là tia phân giác của tam giác BHA.

Áp dụng tính chất đường phân giác vào tam giác BHA ta có:

\(\dfrac{IA}{IH}=\dfrac{AB}{BH}\) => IA.BH=AB.IH =>đpcm

b) Xét tam giác BHA và tam giác BAC có :

góc BAC=góc BHA (\(=90^0\))

góc ABC chung

=>tam giác BHA đồng dạng tam giác BAC

c) Theo câu a ta có: \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\) hay \(\dfrac{IH}{IA}=\dfrac{BH}{AB}\) (1)

BE là tia phân giác của góc ABC => BE là tia phân giác của tam giác ABC => \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\) (2)

Mà theo câu b thì tam giác BHA đồng dạng tam giác BAC => \(\dfrac{BH}{BA}=\dfrac{AB}{BC}\) (3)

Từ (1),(2),(3) => \(\dfrac{IH}{IA}=\dfrac{AE}{EC}\) =>đpcm

d) Từ câu b ta có: tam giác BHA đồng dạng tam giác BAC => góc BAH=góc BCA

Xét tam giác ABE và tam giác HCA có:

góc BAH =góc BCA (cmt)

góc BAE=góc CHA (\(=90^0\))

=>tam giác BAE đồng dạng tam giác HCA => góc BEA = góc HAC

=> tam giác AIE cân tại I => đpcm

1 cho tam giác ABCvuông tại góc A,đường cao AH( H thuoojcBC) và phân giác BE của ABC ( E thuộcAC)  cắt nhau tại I. chứng minh           a IH.AB=IA.BH                         b tam giác BHA    tam giác BAC        AB 2 =BH.BC               c IH/IA =AE/EC                       d tam giác AIE cân 2 cho tam giác ABC cân tại A có 2 đường cao AHvàBI cắt nhau tại Ovaf AB=5cm ,BC=6cm tia BI cắt đường phân giác...
Đọc tiếp

1 cho tam giác ABCvuông tại góc A,đường cao AH( H thuoojcBC) và phân giác BE của ABC ( E thuộcAC)  cắt nhau tại I. chứng minh 

          a IH.AB=IA.BH                         b tam giác BHA    tam giác BAC        AB =BH.BC 

              c IH/IA =AE/EC                       d tam giác AIE cân 

2 cho tam giác ABC cân tại A có 2 đường cao AHvàBI cắt nhau tại Ovaf AB=5cm ,BC=6cm tia BI cắt đường phân giác ngoài của góc A tại M .

 a tính AH?      b chứng tỏ AM2=OM.IM 

c tam giác MAB đồng dạng tam giác AOB    d IA.MB=5.IM 

3 cho tam giác ABC vuông owrA (AB<AC),đường cao AH, biết AB=6cm. đường trung trực của BC cắt đường thẳng AB,AC,BC theo thứ tự ở D,E vá F biết DE=5cm , EF=4cm  chứng minh 

a tam giác FEC đồng dạng tam giác FBD  b tam giác AEF  tam giác HAC  c tính BC,AH,AC 

       giúp minh giải bài này với mình đang cần mình cảm ơn trước 

         

2
19 tháng 3 2018

a)  \(\Delta ABH\) có   \(BI\) là phân giác   \(\widehat{ABH}\),   áp dụng tính chất đường phân giác của tam giác ta có:

       \(\frac{IH}{IA}=\frac{BH}{AB}\)

\(\Rightarrow\)\(IH.AB=IA.BH\)

b)  Xét 2 tam giác vuông:  \(\Delta BHA\) và   \(\Delta BAC\) có:

          \(\widehat{B}\)   CHUNG

         \(\widehat{AHB}=\widehat{CAB}\)

suy ra:   \(\Delta BHA\)\(~\)\(\Delta BAC\)   

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{BA}{BC}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c) hình như đề sai, bn ktra lại nhé

d)  Ta có:   \(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}\left(=90^0\right)\)

mà    \(\widehat{ABE}=\widehat{IBH}\)

\(\Rightarrow\)\(\widehat{BEA}=\widehat{BIH}\)

mà  \(\widehat{BIH}=\widehat{AIE}\)  (đối đỉnh)

\(\Rightarrow\)\(\widehat{AIE}=\widehat{AEI}\)

\(\Rightarrow\)\(\Delta AIE\) cân

30 tháng 3 2018

Mình bổ sung câu c nhé ^^

 Ta có:\(\frac{IH}{IA}=\frac{BH}{AB}\left(1\right)\)
           \(\frac{AE}{CE}=\frac{AB}{BC}\left(\text{BE là đường phân giác góc B}\right)\left(2\right)\)
           \(\frac{BH}{AB}=\frac{AB}{BC}\left(\text{\Delta BHA ~\Delta BAC}\right)\left(3\right)\) 
Từ (2) và (3) suy ra:

\(\frac{AE}{CE}=\frac{BH}{AB}\left(4\right)\)

Từ (1) và (4) suy ra:

\(\frac{IH}{IA}=\frac{AE}{EC}\)

Chúc bạn học tốt ^^

9 tháng 4 2021

A B C H D I

9 tháng 4 2021

a) Vì \(\Delta ABC\) vuông tại A (giả thiết).

\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).

\(\Rightarrow6^2+8^2=BC^2\)(thay số).

\(\Rightarrow BC^2=36+64=100\)

\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)

Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)