Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tự CM AHBΔ∼ΔCAB (g.g)
=> \(\widehat{HAB}=\widehat{C}\)
Xét ΔAHB và ΔCHA có:
\(\widehat{AHB}=\widehat{AHC}\) \(=90^0\)
\(\widehat{HAB}=\widehat{C}\) (cmtrn)
=> ΔAHB∼ΔCHA (g.g)
b) Theo câu a) ta có: ΔAHB∼ΔCHA
=> \(\frac{AH}{CH}=\frac{HB}{AH}\Leftrightarrow AH^2=HB.CH\)
\(\Leftrightarrow AH^2=9\times16=144\left(cm\right)\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Ta có: SABC=\(\frac{1}{2}\cdot BC\cdot AH=\frac{1}{2}\cdot\left(BH+HC\right)\cdot AH\)
\(\Leftrightarrow S_{ABC}=\frac{1}{2}\cdot\left(9+16\right)\cdot12=150\left(cm\right)\)
c)Xét ΔABH có: \(\widehat{AHB}\) \(=90^0\)
=> Áp dụng đl Pitago
=> \(BH^2+AH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\left(cm\right)\)
\(\Leftrightarrow AB=25\left(cm\right)\)
Theo câu a) ta có: ΔAHB∼ΔCHA
=> \(\widehat{HBA}=\widehat{HAC}\)
Xét ΔHBA và ΔKAH có:
\(\widehat{AHB}=\widehat{HKA}\) \(=90^0\)
\(\widehat{HBA}=\widehat{HAK}(hay \widehat{HAC})\) (cmtrn)
=> ΔHBA∼ΔKAH (g.g)
=> \(\frac{HB}{KA}=\frac{BA}{AH}\Leftrightarrow HB\cdot AH=BA\cdot KA\)
\(\Leftrightarrow AK=\frac{HB\cdot AH}{BA}=\frac{9\cdot12}{25}=4,32\left(cm\right)\)
Xét ΔAHK có: \(\widehat{AKH}\) \(=90^0\)
=> Áp dụng đl Pitago
=> \(HK^2+AK^2=AH^2\Leftrightarrow HK^2=AH^2-AK^2\)
\(\Leftrightarrow HK^2=12^2-4,32^2=125,3376\left(cm\right)\)
\(\Leftrightarrow HK\approx11,196\left(cm\right)\)
Ta có: 2PAHK=AH+HK+AK=12+11,196+4,32=12,516(cm)
SAHK=\(\frac{1}{2}\cdot HK\cdot AK=\frac{1}{2}\cdot11,196\cdot4,32\approx24,18\left(cm^2\right)\)
ko chắc câu c) mk lm đúng đâu. Tại mk chỉ lm theo ý hiểu thôi
Bài làm
b) Xét tam giác HAP có:
Q là trung điểm BH
P là trung điểm AH
=> QP là đường trung bình
=> QP // AB
=> \(\widehat{HQP}=\widehat{QPA}\)
Xét tam giác HQP và tam giác ABC có:
\(\widehat{HQP}=\widehat{QPA}\)
\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)
=> Tam giác HQP ~ Tam giác ABC ( g - g )
=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\) (1)
Xét tam giác HAB có:
QP // AB
=> Tam giác HQP ~ HAB
=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\) (2)
Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)
Xét tam giác AHC vuông ở H có:
\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)
Xét tam giác ABC vuông ở A có:
\(\widehat{CBA}+\widehat{BCA}=90^0\) (4)
Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)
Xét tam giác ABQ và tam giác CAP có:
\(\frac{AB}{AC}=\frac{QB}{PA}\)
\(\widehat{PAC}=\widehat{CBA}\)
=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )
Bài làm
a) Vì AM là trung tuyến
=> M là trung điểm BC
=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )
Ta có: BH + HM + MC = BC
=> BH + HM + MC = BH + HC
hay 9 + HM + 12,5 = 9 + 16
=> HM = 9 + 16 - 9 - 12,5
=> HM = 3,5 ( cm )
Vì tam giác ABC là tam giác vuông ở A
Mà AM trung tuyến
=> AM = MC = BM = 12,5 ( cm )
Xét tam giác AHM vuông ở H có:
Theo định lí Pytago có:
AH2 = AM2 - HM2
hay AH2 = 12,52 - 3,52
=> AH2 = 156,25 - 12,25
=> AH2 = 144
=> AH = 12 ( cm )
SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )
Xét tam giác AHB vuông ở H có:
Theo định lí Py-ta-go có:
AB2 = BH2 + AH2
=> AB2 = 92 + 212
=> AB2 = 81 + 441
=> AB2 = 522
=> AB \(\approx\)22,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo định lí Pytago có:
AC2 = AH2 + HC2
=> AC2 = AH2 + ( HM + MC )2
hay AC2 = 212 + ( 3,5 + 12,5 )2
=> AC2 = 441 + 256
=> AC2 = 697
=> AC \(\approx\)26,4 ( cm )
Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )
SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/AB
=>BA^2=BH*BC
b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn 16*25=20(cm)
S=15*20/2=150cm2
c: AD/DC=HA/HC=12/16=3/4
Bạn kham khảo link này nhé.
Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath
a) Gọi x(cm) là độ dài cạnh DB
Áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A, ta có:
BC2= AB2 + AC2= 82 + 62= 100
=>BC=\(\sqrt{100}\)=10(cm)
Xét tam giác ABC, ta có:
AD là tia phân giác góc A
=> \(\frac{DB}{AB}=\frac{DC}{AC}hay\frac{x}{8}=\frac{10-x}{6}\)
=> 6x = 8(10-x)
<=>6x=80-8x
<=>6x + 8x=80
<=> 14x=80
<=> x= 5,72(cm)
Vậy DB= 5,72 cm
DC= 10 - 5,72= 4,28 (cm)
a. tam giác ABC có góc A = 90 độ nên
BC^2=AB^2+AC^2
=8^2+6^2=100
=>BC =10
áp dụng tính chất dãy tỉ số bằng nhau ta có :
BD/AB=DC/AC =BD+DC/AB+AC=10/14=5/7
=>BD/AB=5/7=>BD=8*5:7=40/7
=>DC/Ac=5/7=>DC=6*5/7=30/7