K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

c: ΔABC đồng dạng với ΔHBA

ΔABC đồng dạng với ΔHAC

=>ΔHBA đồng dạng với ΔHAC

d: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

12 tháng 4 2017

Xét hai tam giác ABC và tam giác HBA có 

A = H = 90 

B là góc chung 

=> tam guacs ABC đồng dạng với tam giác HBA (g _ g) (1) 

Xét hai tam giác ABC và tam giác HCA có 

A= H = 90  

C là góc chung 

=> tam giác ABC ~ tam giác HAC ( g_ g) (2) 

(1) =>\(\frac{AB}{BC}=\frac{BH}{BA}\)=> AB.AB = BH.BC => \(AB^2\)\(=BH.BC\) 

(2) => \(\frac{AC}{BC}=\frac{CH}{AC}=AC.AC=BC.CH=AC^2=BC.CH\)

b ) Áp dụng định lý Py - ta - go vào tam giác ABC 

\(BC^2=AC^2+AB^2\)\(16^2+12^2\)= 400 

=> BC = \(\sqrt{400}=20\)

từ tam giác ABC ~ HBA  =>\(\frac{AB}{BH}=\frac{BC}{BA}< =>\frac{12}{BH}=\frac{20}{12}=>BH=\frac{12.12}{20}=7,2\)

từ tam giác ABC ~ HAC => \(\frac{AB}{HA}=\frac{BC}{AC}< =>\frac{12}{HC}=\frac{20}{16}=>HC=\frac{12.16}{20}=9,6\)

Áp dụng định lý Py - ta - go vào tam giác HBA 

\(AH^2=AB^2-HB^2=12^2-7,2^2=9,6\)

6 tháng 5 2019

a) áp dụng Pi-ta-go ta có

BC2 = AB2 + AC2

⇒ AC2 = 25 - 9 = 16

⇒ AC = 4 (cm)

b)xét △ ABC và △ HAC có

\(\widehat{H}=\widehat{A}=90^0;\widehat{C}\) chung

⇒ △ABC ~ △ HAC (g - g)

\(\frac{AB}{HA}=\frac{BC}{AC}\) (1) ⇒ AB.AC = AH.BC

c) từ (1) ⇒ HA = \(\frac{12}{5}\)

áp dụng Pi-ta-go ta có

BH2 = \(\frac{81}{25}\); ⇒ BH=\(\frac{9}{5}\)(cm)

HC2 = \(\frac{256}{25}\) ⇒ HC = \(\frac{16}{5}\)(cm)

⇒ SHAC = \(\frac{96}{25}\left(cm^2\right)\)

⇒ SAHB= \(\frac{54}{25}\left(cm^2\right)\)

\(\frac{S_{HAC}}{S_{HBA}}=\frac{16}{9}\)

19 tháng 3 2017

trả lời giúp với ạ đang cần bài gấp 

19 tháng 3 2017

a. xét tam giác ABC và tam giác HAC có

góc ACB= góc HCA ( góc chung)

góc BAC = góc AHC (=90độ)

do đó tam giác ABC đồng dạng với tam giác HAC(g.g)

b. theo bài ra ta có góc BAC=90 độ

suy ra tam giác ABC vuôg tại A

ta lại có AB=6cm, AC=8cm

suy ra AB ^2+ AC^2= BC^2

thay vào ta có  6^2+ 8^2= BC^2

suy ra BC^2= 10^2

suy ra BC = 10 (cm)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔCAB vuông tại A và ΔCHA vuông tại H có

góc ACB chung

Do đó: ΔCAB\(\sim\)ΔCHA
Suy ra: CA/CH=CB/CA

hay\(CA^2=CH\cdot CB\)

 

29 tháng 3 2018

a)   Xét   \(\Delta ABC\) và   \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\widehat{ABC}=\widehat{HAC}\)  do cùng phụ với góc BAH )

suy  ra:    \(\Delta ABC~\Delta HAC\)

b)  Áp dụng định lý Pytago ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

  Áp dụng hệ thức lượng ta có:

 \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm

\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm

  \(BH=BC-HC=10-6,4=3,6\)cm