K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔMBE vuông tại M có

góc B chung

Do đó: ΔABC\(\sim\)ΔMBE

c: BC=5cm

BM=BC/2=7,5cm

Ta có: ΔABC\(\sim\)ΔMBE

nên AB/MB=BC/BE=AC/ME

=>9/7,5=15/BE=12/ME

=>15/BE=12/ME=6/5

=>BE=75/6=25/2(cm); ME=10(cm)

23 tháng 4 2018

Sai đề bài rồi bn.

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

18 tháng 3 2020

Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:

\(\widehat{C}\)chung

\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)

=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)

b) Tam giác AHD vuông tại H (gt)

=> \(\widehat{BEC}=\widehat{ADC}=135^o\)

Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A 

=> BE=\(AB\sqrt{2}=3\sqrt{2}\)

Nguồn: Đặng Thị Nhiên

18 tháng 3 2020

c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC

\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)

Vì tam giác ABC đồng dạng tam giác DEC nên:

\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)

Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)

Nguồn: Đặng Thị Nhiên

26 tháng 5 2019

Hình vẽ:

iXpGzDn.png

26 tháng 5 2019

Xét \(\Delta ABC\) và \(\Delta DIC\) có:

\(\widehat{ABC}=\widehat{DIC}=90^0\)

\(\widehat{ACB}\) chung.

\(\Rightarrow\Delta ABC~DIC\left(g.g\right)\)

b.

Hạ \(BK\perp AC\)

Do BI trung tuyến nên \(BI=IA=IC=\frac{AC}{2}=7,5\left(cm\right)\)

\(\Delta KCB~\Delta BCA\left(g.g\right)\Rightarrow BC^2=KC\cdot AB\Rightarrow KC=9,6\left(cm\right)\)

Áp dụng định lý Thales,ta có:

\(\frac{CI}{CK}=\frac{CD}{CB}=\frac{ID}{BK}=\frac{7,5}{9,6}\)

\(\Rightarrow CD=\frac{7,5\cdot CB}{9,6}=\frac{7,5\cdot12}{9,6}=9,375\left(cm\right)\)

Áp dụng định lý Pythagoras vào \(\Delta CBK\),ta có:

\(BK^2+KC^2=BC^2\)

\(\Rightarrow BK^2=BC^2-KC^2=51,84\left(cm\right)\)

\(\Rightarrow BK=7,2\left(cm\right)\)

\(ID=\frac{7,5\cdot BK}{9,6}=\frac{7,5\cdot7,2}{9,6}=5,625\left(cm\right)\)

c.

\(\Delta BDE~IDC\left(g.g\right)\Rightarrowđpcm\)

P/S:Bài j mà kỳ cục zậy ? câu c lại easy hơn nhiều câu b:((

a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBME đồng dạng với ΔBAC

b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có

góc MBE=góc MNC

=>ΔMBE đồng dạng với ΔMNC

=>MB/MN=ME/MC

=>MN*ME=MB*MC=1/4BC^2

=>BC^2=4*MN*ME

14 tháng 4 2023

a) xét △ABC và △MBE có : 

Góc BAC  = Góc BME  = 90 (Gt)

Góc B chung

⇒△ABC ∼ △MBE (g.g) (1)

b)Xét △ABC và △MCN có:

Góc BAC  = góc NMC = 90 (Gt)

⇒△ABC ∼ △MBE (g.g) (2)

Ta có M là tđ của BC ⇒ MB =MC =1/2 BC

Từ (1) và (2) ⇒△MNC ∼ △MBE

⇒EM/MC = MN/BM

⇔ EM/MN = 1/2BC : 1/2BC

⇔BC2 =EM/MN : 4

⇔BC2 = EM/4MN