K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a ) BC = 13 cm

AM = 6,5 cm 

b) ta có 

tam giác ABC vuông tại A , AM là trung tuyến 

nên BC = 2AM

mà D đối xứng với A qua M 

nên AD = 2 AM

suy ra  : BC =AM

c) để ABCD là hình vuông thì tam giác ABC phải vuông cân

 

14 tháng 2 2016

ek pan ghi ro cach giai di

 

20 tháng 1 2020

A B C D M 5cm 12cm

a, Áp dụng định lí Piatago trong \(\Delta ABC\) vuông tại \(A\) có:

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=5^2+12^2\)

\(\Rightarrow BC=\sqrt{169}\)

\(\Rightarrow BC=13cm\)

Ta có: \(AM\) là đường trung tuyến ứng với cạnh huyền \(BC\) nên:

\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5cm\)

b, Xét tứ giác \(ABCD\) có:

\(M\) là trung điểm của \(AD\)

\(M\) là trung điểm của \(BC\)

\(\Rightarrow ABCD\) là HBH

\(\Rightarrow AD=BC\)

c, Giả sử \(AB=AC\)

\(\Rightarrow\Delta ABC\)vuông cân ( Từ đầu \(\Delta ABC\) vuông rồi)

Xét HBH \(ABCD\) có:

\(\widehat{A}=90^0\)

\(\Rightarrow ABCD\) là HCN

Xét hình chữ nhật \(ABCD\) có:

\(AB=AC\left(gt\right)\)

\(\Rightarrow ABCD\) là hình vuông.

Để \(ABCD\) là hình vuông thì \(\Delta ABC\)  vuông tại \(A\) cần thêm điều kiện \(AB=AC\) 

20 tháng 1 2020

M A B C D

a ) Xét \(\Delta ABC\)vuông tại A (gt) có :

\(BC^2=AB^2+AC^2\)( định lý Py - ta - go )
\(BC^2=5^2+12^2\)

\(BC^2=25+144\)

\(BC^2=169\)

\(\Rightarrow BC=13cm\)( vì BC > 0 )

+ Vì AM là đường trung tuyến ứng với cạnh huyền BC trong tam giác vuông ABC ( gt)

\(\Rightarrow AM=\frac{1}{2}BC\)( tính chất tam giác vuông cân )

\(\Rightarrow AM=\frac{1}{2}.13\)

\(\Rightarrow AM=6,5\left(cm\right)\)

b ) Vì AM là đường trung tuyến  của \(\Delta ABC\left(gt\right)\)

\(\Rightarrow M\)là trung điểm của BC (1) 

+ Vì D đối xứng với A qua M (gt)

\(\Rightarrow M\)là trung điểm của AD (2)

Từ (1) và (2) \(\Rightarrow\) 2 dường chéo BC và AD cắt nahu tại trung điểm M của mỗi đường 

\(\Rightarrow\)Tứ giác \(ABCD\) là hình bình hành ( dấu hiệu nhận biết hình bình hành )

Mà \(\widehat{BAC}=90^0\left(gt\right)\)

\(\Rightarrow\)Hình bình hành ABCD là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )

\(\Rightarrow AD=BC\)( tính chất hình chữ nhật )

c ) Theo câu b ta có \(ABCD\)là hình chữ nhật 

Để hình chữ nhật \(ABCD\) là hình vuông

\(\Leftrightarrow AB=AC\)

\(\Rightarrow\Delta ABC\)cân tại A

Mà \(\Delta ABC\)vuông tại A (gt)

\(\Rightarrow\Delta ABC\)vuông cân tại A .

Vậy \(\Delta ABC\)vuông cân tại A thì hình chữ hật ABCD là hình vuông 

Chức bạn học tốt !!!

18 tháng 9 2017

A B C M 5 12

a) \(BC^2=AC^2+AB^2=5^2+12^2=169=13^2\)

=> \(BC=13\)

Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông thì

   \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)

b) ABDC là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường. Hơn nữa góc A vuông nên ABDC là hình chữ nhật. Suy ra hai đường chéo bằng nhau, AD = BC

c) Để ABDC là hình vuông thì AB = AC => Tam giác ABC là vuông cân.

19 tháng 4 2020

a) BC^2=AC^2+AB^2=5^2+12^2=169=13^2

=> BC=13

Theo tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông thì

   AM=12 BC=132 =6,5

b) ABDC là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường. Hơn nữa góc A vuông nên ABDC là hình chữ nhật. Suy ra hai đường chéo bằng nhau, AD = BC

c) Để ABDC là hình vuông thì AB = AC => Tam giác ABC là vuông cân.

18 tháng 1 2022

a. Xét tứ giác AEBM có:

+ D là trung điểm AB (gt).

+ D là trung điểm EM (E là điểm đối xứng với M qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

Mà AB \(\perp\) EM (E là điểm đối xứng với M qua D).

\(\Rightarrow\) Tứ giác AEBM là hình thoi (dhnb).

b. Tứ giác AEBM là hình thoi (cmt).

\(\Rightarrow\) AE = BM; AE // BM (tính chất hình thoi).

Ta có: M là trung điểm BC (AM là đường trung tuyến tam giác ABC). 

\(\Rightarrow\) BM = CM.

Mà AE = BM (cmt).

\(\Rightarrow\) AE = CM.

Xét tứ giác AEMC có:

+ AE = CM (cmt).

+ AE // CM (AE // BM).

\(\Rightarrow\) Tứ giác AEMC là hình bình hành (dhnb).

c. Tứ giác AEBM là hình vuông (giả thiết).

\(\Rightarrow\) AM \(\perp\) BM (tính chất hình vuông).

\(\Rightarrow\) AM \(\perp\) BC.

Xét tam giác ABC vuông tại A có:

+ AM là đường trung tuyến tam giác ABC (gt).

Mà AM là đường cao (AM \(\perp\) BC).

\(\Rightarrow\) Tam giác ABC vuông cân tại A.

Vậy tam giác ABC vuông cân tại A thì AEBM là hình vuông.

29 tháng 12 2021

a: AM=6,5cm

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật

29 tháng 12 2021

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà AD=BC

nên ABDC là hình chữ nhật