Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thiếu đề bài ko đấy bạn , theo mk phải là tam giác vuông chứ
#mã mã#
áp dụng định lí pi-ta-go vào tam giác vuông ABH ta có:
AH2=AB2-BH2=62-32=27
=> AH=\(\sqrt{27}=3\sqrt{3}\left(cm\right)\)
+\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{27}=\frac{1}{36}+\frac{1}{AC^2}\)
\(\Rightarrow\frac{1}{AC^2}=\frac{1}{27}-\frac{1}{36}=\frac{1}{108}\)
\(\Rightarrow AC^2=108\)
\(\Rightarrow AC=\sqrt{108}=6\sqrt{3}\left(cm\right)\)
áp dụng định lí pi-ta-go vào tam giác vuông AHC ta có:
HC2=AC2-AH2=108-27=81
=> HC=\(\sqrt{81}=9\left(cm\right)\)
A B C H
ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)
ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\)
\(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)
\(\Rightarrow CH=3,2\) (do BH>0)
\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)
\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)
ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)
Đặt BH = x (x > 0) => BC = (x + 6,4)
Có: AB2 = BH.BC => 36 = x(x + 6,4) => 36 = x2 + 6,4x => x2 + 6,4x - 36 = 0
=> (x + 10)(5x - 18) = 0 => x = -10 (loại) hoặc x = 18/5 (nhận)
=> BH = 18/5cm => BC = 18/5 + 6,4 = 10cm
Có: AC2 = HC.BC = 6,4 . 10 = 64 => AC = 8cm
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}\Rightarrow AH=\sqrt{\frac{576}{25}}=\frac{24}{5}cm\)
Vậy BC = 10cm , BH = 18/5cm , AH = 24/5cm , AC = 8cm
\(\Delta ABC\)có A=90 và AH là đường cao
Áp dụng hệ thức giữa cạnh góc vuông và hingf chiếu của nó trên cạnh huyền
=> \(AB^2=CH.BC\); \(AC^2=HC.BC\)
<=> \(AB^2=\left(BC-CH\right)BC\)
<=>\(BC^2=AB^2+CH.BH\)
=>\(BC^2=6^2+6,4.BC\)
<=> \(BC^2-6,4.BC-36=0\)
=> BC = 10(cm) (nhận) : BC=- 3,6 (cm) (loại)
=> \(AC=\sqrt{CH.BC}=\sqrt{6,4.10}=8\)(cm)
=>BH= BC - CH =10 - 6,4 = 3,6 (cm)
Áp dụng hệ thức giữa đường cao và các cạnh trong tam giác
=> AH.BC =AB.AC
=>AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=4.8\left(cm\right)\)
Vậy AH =4,8 (cm) ; BC = 10 (cm) ; AC =8(cm) ; BH = 3,6 (cm)
A B C H AB=6cm BH=3cm AH, AC, HC=?
Xét ▲ ABH vuông tại H :
ADĐL pi- ta - go ta có:
AB2 = AH2 + BH2
=> AH2 = AB2 - BH2
AH2 = 62 - 32
AH2 = 27
AH = \(\sqrt{27}\)
AC , HC bn tự tính nốt nhé....
A B C H N M 3 4
Xét \(\Delta HAC\)vuông tại H có HN là đường trung tuyến ứng với cạnh huyền
=> HN = NC = NA = AC/2
=> AC = 2HN = 8
Tương tự AB = 6
Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)
\(\Leftrightarrow AH=\frac{24}{5}\)
Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có
\(HA^2+HC^2=AC^2\)
\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)
\(\Leftrightarrow HC=\frac{32}{5}\)
Tương tự \(HB=\frac{18}{5}\)
Sử dụng hệ thức lượng trong tam giác vuông:
\(AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{6^2}{3}=12\)
=> \(HC=BC-BH=12-3=9\)
=> \(AH^2=BH.CH=3.9=27\Rightarrow AH=3\sqrt{3}\)
Áp dụng định lí pi-ta-go
\(AC^2=BC^2-AB^2=12^2-6^2=108\)
=> \(AC=6\sqrt{3}\)