Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E D A B C M N
a, Xét t/g ABE và t/g ADC có:
AB = AD (gt)
AE = AC (gt)
góc BAE = góc DAC (đối đỉnh)
Do đó t/g ABE = t/g ADC (c.g.c)
=> BE = CD (2 cạnh t/ứ)
b, Vì t/g ABE = t/g ADC => góc ABE = góc ADC (2 góc t/ứ)
Mà 2 góc này ở vị trí so le trong nên BE // CD
c, Vì BE = CD => \(\frac{BE}{2}=\frac{CD}{2}\) => BM = DN
Xét t/g AMB và t/g AND có:
BM = DN (cmt)
AB = AD (gt)
góc ABE = góc ADC (cmt)
Do đó t/g AMB = t/g AND (c.g.c)
=> AM = AN (2 cạnh t/ứ)
a) Xét \(\Delta EAB\) và \(\Delta DAC\) có :
\(AE=AC\) ( gt)
\(AB=AD\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh )
Do đó : \(\Delta EAB=\Delta CAD\) ( c-g-c)
\(\Rightarrow BE=CD\) ( cạnh tương ứng )
\(\Rightarrow\) \(\widehat{E_1}=\widehat{C_1}\) ( hai góc tương ứng )
b) Ta có : \(ME=\dfrac{1}{2}BE\) ( M là trung điểm của BE )
\(NC=\dfrac{1}{2}CD\) ( N là trung điểm của CD )
mà BE = CD ( cmt )
\(\Rightarrow ME=NC\)
Xét \(\Delta EAM\) và \(\Delta NAC\) có :
\(ME=NC\) (cmt)
\(AE=AC\) ( gt )
\(\widehat{E_1}=\widehat{C_1}\)
Do đó \(\Delta EAM=\Delta CAN\) ( c-g-c)
\(\Rightarrow\widehat{EAM}=\widehat{NAC}\) ( hai góc tương ứng )
Ta có : \(\widehat{EAN}+\widehat{NAC}=180^o\) ( hai góc kề bù )
hay \(\widehat{EAN}+\widehat{EAM}=180^o\) ( vì \(\widehat{EAM}=\widehat{NAC}\))
\(\Rightarrow\) ba điểm A , N , M thằng hàng (đpcm)
ABCDEMN11
a)Xét tg EAB và tg CAD có:
EA=ED(gt)
BA=AD(gt)
góc BAE=góc CAD(hai góc đối đỉnh)
=>tgEAB=tgCAD(c-g-c)
=>BE=AC(hai góc t/ư)
b)Vì tg EAB=tg CAD
=>góc ABM=góc ADC(hai góc tương ứng ) mà hai góc này ở vị trí so le trong
=>BE//CD
c)Vì BE=CD=>BE/2=CD/2=>BM=DN
Xét tg AMB và tg AND có
AB=AD(gt)
BM=DN(cmt)
góc ABE=góc ADC(cmt)
=>tgAMB=tgAND(c-g-c)
=>AM=AN(hai cạnh tương ứng )
A A A B B B C C C D D D E E E M M M N N N
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có :
AB = AC(gt)
\(\widehat{A}\)chung
AE = AD(gt)
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> BE = CD(hai cạnh tương ứng)
b) Ta có : \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> \(\widehat{ABE}=\widehat{ACD}\)(hai góc tương ứng)
Mà \(\widehat{ABE}\)và \(\widehat{ACD}\)là hai góc so le trong
=> BE//CD
c) Vì M là trung điểm của BE nên \(ME=EB=\frac{MB}{2}\)(1)
Vì N là trung điểm của CD nên \(DN=DC=\frac{NC}{2}\)(2)
Từ (1) và (2) => \(\frac{MB}{2}=\frac{NC}{2}\)hay MB = NC
Xét \(\Delta AMB\)và \(\Delta ANC\)có :
MB = NC(cmt)
\(\widehat{A}\)chung
AB = AC(cmt câu a)
=> \(\Delta AMB=\Delta ANC\)(c-g-c)
=> AM = AN
=> A là trung điểm của MN