K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

Ta có:

\(a+b+c+ab+bc+ca=6\)

\(\Leftrightarrow12-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+3-\left(2a+2b+2c+2ab+2bc+2ca\right)=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\Rightarrow a=b=c=1\)

\(\Rightarrow Q=\frac{1^{22}+1^{12}+1^{1994}}{1^{22}+1^{12}+1^{2013}}=\frac{3}{3}=1\)

21 tháng 11 2017

vào máy tính bấm sẽ ra đáp án = 1

24 tháng 11 2017

fkfkbang14

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

6 tháng 10 2019

Sử dụng BDT Cauchy dễ dàng CM được: \(ab+bc+ac\le a^2+b^2+c^2=3\)

->\(a+b+c\ge3\)(1)

Tiếp  tục sử dụng BDT Cauchy CM được:\(a^2+b^2+c^2+3\ge2a+2b+2c\Leftrightarrow a^2+b^2+c^2=3\ge a+b+c\)(2)

Từ (1),(2) -> a+b+c=3. Dấu = xảy ra khi a=b=c=1. Thay vào ta tính được B=1

7 tháng 10 2019

a, b, c là số thực sao có thể sử dụng bất đẳng thức Cauchy đc???

Em tham khảo bài làm : Câu hỏi của Cao Chi Hieu - Toán lớp 9 - Học toán với OnlineMath

14 tháng 8 2019

a^2+b^2+c^2>=ab+bc+ca

=>2(a^2+b^2+c^2)>=2(ab+bc+ca)

=>3(a^2+b^2+c^2)>=(a+b+c)^2

Dấu "=" xảy ra <=> a=b=c

=> a=b=c=2

Còn lại tự làm ok chứ

14 tháng 8 2019

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)

\(\Leftrightarrow12+2\left(ab+bc+ca\right)=36\)

\(\Leftrightarrow ab+bc+ca=12\)

Do đó \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(VT\ge0\forall x;y;z\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c\)

\(a+b+c=6\Leftrightarrow a=b=c=2\)

\(P=3\cdot\left(2-3\right)^{2013}\)

\(P=3\cdot\left(-1\right)\)

\(P=-3\)

Vậy....

29 tháng 2 2016

bằng 1 , 0 sai dc đâu

1 tháng 3 2016

người ta cần lời giải mà