K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

\(a^2+b^2=c^2\Leftrightarrow a^2=c^2-b^2=\left(c-b\right)\left(c+b\right)\)

Nếu b;c cùng lẻ => c -b và c+b là số chẵn => a là số chẵn

Nếu b hoặc c là số chẵn thì hiển nhiên đúng

Vậy luôn có ít nhất 1 số chẵn ( chia hết cho 2)  (dpcm)

21 tháng 12 2016

cho 2

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Lời giải:

a. Giả sử $a,b$ đều không chia hết cho 3.

Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2, b^2$ chia 3 đều dư 1.

$\Rightarrow c^2=a^2+b^2$ chia 3 dư 2 (vô lý vì $c^2$ là scp mà scp khi chia 3 chỉ dư 0 hoặc 1)

Do đó điều giả sử là sai. Tức là trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3.

b.

Vì trong 2 số $a,b$ có ít nhất 1 số chia hết cho 3 nên $ab\vdots 3$ (1)

Lại có:

Nếu $a,b$ đều lẻ thì $a^2\equiv 1\pmod 4, b^2\equiv 1\pmod 4$

$\Rightarrow c^2=a^2+b^2\equiv 2\pmod 4$ (vô lý vì scp khi chia 4 chỉ dư 0 hoặc 1)

Nếu $a,b$ có 1 số chẵn, 1 số lẻ. Không mất tổng quát giả sử $a$ chẵn, $b$ lẻ.

$\Rightarrow a^2+b^2=c^2$ lẻ nên $c$ lẻ.

Ta có: $a^2=c^2-b^2$

Mà $c^2, b^2$ là scp lẻ nên $c^2\equiv 1\pmod 8; b^2\equiv 1\pmod 8$

$\Rightarrow a^2\equiv 1-1\equiv 0\pmod 8$

$\Rightarrow a\vdots 4$

$\Rightarrow ab\vdots 4$

Nếu $a$ chẵn, $b$ chẵn thì hiển nhiên $ab\vdots 4$

Vậy tóm lại $ab\vdots 4$ (2)

Từ (1); (2) $\Rightarrow ab\vdots 12$ 

Ta có đpcm.

12 tháng 6 2021

Ta có :

\(1=1\)

\(\frac{1}{2^2}< \frac{1}{1\times2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

........................................................

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

Cộng tất cả lại ta có :

\(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}=2-\frac{1}{n}\)với \(\forall n\)

Nếu chọn ra 5 số a,b,c,d,e khác nhau bất kỳ  trong các số từ 1 đến n thì 

\(\Rightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}< 2\)

Mà theo giả thiết :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}+\frac{1}{e^2}=2\)

⇒ có ít nhất 2 trong 5 số a;b;c;d;e bằng nhau

12 tháng 6 2021

giúp mình câu này với!!!