K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VD
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
0
NT
2
15 tháng 9 2019
Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)
Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)
\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)
Ta có:\(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{cases}\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\Rightarrow1\ge ab+bc+ca}\)(1)
Lại có:\(a^2+b^2+c^2+2ab+2bc+2ca\le1+2=3\)
\(\Rightarrow\left(a+b+c\right)^2\le3\Rightarrow a+b+c\le\sqrt{3}\)(2)
Từ (1) và (2) suy ra \(a+b+c+ab+bc+ca\le1+\sqrt{3}\)