K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 2 2017

Lời giải:

\(P=(a+b+c)^2-(ab+bc+ac)=36-(ab+bc+ac)\) $(1)$

\(0\leq a,b,c\leq 4\Rightarrow (a-4)(b-4)(c-4)\leq 0\)

\(\Leftrightarrow abc-4(ab+bc+ac)+16(a+b+c)-64\leq 0\)

\(\Leftrightarrow 4(ab+bc+ac)\geq 32+abc\geq 32\) (do \(abc\geq 0\) )

\(\Rightarrow ab+bc+ac\geq 8\) $(2)$

Từ \((1),(2)\Rightarrow P\leq 28\) hay \(P_{\max}=28\)

Dấu bằng xảy ra khi \((a,b,c)=(0,2,4)\) và các hoán vị của nó

27 tháng 4 2017

Từ \(\frac{1}{a}+\frac{1}{b}=2\Rightarrow\frac{a}{ab}+\frac{b}{ab}=2\Rightarrow\frac{a+b}{ab}=2\)

\(\Rightarrow2ab=a+b\ge2\sqrt{ab}\Rightarrow\hept{\begin{cases}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)

\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)

Khi đó \(Q\le\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=1\)

P/s: 2ab -> 2a2b và 2ab2

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy:

\(4=a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\Rightarrow ab\leq 2\)

\(P=a^4+b^4+4ab=(a^2+b^2)^2-2a^2b^2+4ab\)

\(=16-2(a^2b^2-2ab)=18-2(a^2b^2-2ab+1)\)

\(=18-2(ab-1)^2\)

\((ab-1)^2\geq 0, \forall ab\leq 2\Rightarrow P=18-2(ab-1)^2\leq 18\)

Vậy \(P_{\max}=18\Leftrightarrow \left\{\begin{matrix} ab=1\\ a^2+b^2=4\end{matrix}\right.\)

1 tháng 3 2017

ko biet

6 tháng 1 2015

Do 1≥ a,b,c≥0 ta co:

         \((1-a^2)(1-b)+(1-b^2)(1-c)+(1-c^2)(1-a) ≥ 0\)

  <=>  \(3+a^2b+b^2c+c^2a ≥ a^2+b^2+c^2+a+b+c\)(1)

  Lai co: \(a^2(1-a)+b^2(1-b)+c^2(1-c)+a(1-a^2)+b(1-b^2)+c(1-c^2) ≥ 0\)

  <=>  \(a^2+b^2+c^2+a+b+c ≥ 2(a^3+b^3+c^3)\)(2)

 Tu (1) va (2) suy ra \(3+a^2b+b^2c+c^2a ≥ 2(a^3+b^3+c^3)\)

25 tháng 11 2018

Ta có \(A=\dfrac{2x+3y}{2x+y+2}\Leftrightarrow2Ax+Ay+2A-2x-3y=0\Leftrightarrow2A=2x-2Ax+3y-Ay\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\Leftrightarrow\left(2A\right)^2=\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\left(1\right)\)Áp dụng bđt bunhiacopski ta có \(\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\le\left(4x^2+y^2\right)\left[\left(1-A\right)^2+\left(3-A\right)^2\right]\Leftrightarrow\left(2A\right)^2\le1.\left(1-2A+A^2+9-6A+A^2\right)\Leftrightarrow4A^2\le2A^2-8A+10\Leftrightarrow2A^2+8A-10\le0\Leftrightarrow A^2+4A-5\le0\Leftrightarrow A^2-A+5A-5\le0\Leftrightarrow A\left(A-1\right)+5\left(A-1\right)\le0\Leftrightarrow\left(A-1\right)\left(A+5\right)\le0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A-1\le0\\A+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A-1\ge0\\A+5\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A\le1\\A\ge-5\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge1\\A\le-5\end{matrix}\right.\left(ktm\right)\end{matrix}\right.\)

Vậy \(-5\le A\le1\)

Vậy GTNN của A là -5

GTLN của A là 1