\(\varepsilon\)R và a,b,c #0thõa mãn b2=ac.C/minh rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2015

Ta có:  \(b^2=a.c\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=k\left(k\in R\right)\)

\(\Rightarrow a=b.k\)\(b=c.k\)

\(\frac{a}{c}=\frac{a.c}{c.c}=\frac{b^2}{c^2}\left(1\right)\)

\(\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}=\frac{\left(b.k+2007b\right)^2}{\left(c.k+2007c\right)^2}=\frac{\left[b\left(k+2007\right)\right]^2}{\left[c.\left(k+2007\right)\right]^2}=\frac{b^2.\left(k+2007\right)^2}{c^2.\left(k+2007\right)^2}=\frac{b^2}{c^2}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a}{c}=\frac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\) \(\left(đpcm\right)\) 

 

Ta co:\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

               \(=\frac{2007b}{2007c}=\frac{a+2007b}{b+2007c}\)

     \(\Rightarrow\left(\frac{a+2007b}{b+2007c}\right)^2=\left(\frac{a}{b}\right)^2=\frac{a}{b}\times\frac{b}{c}=\frac{a}{c}\)

          Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\left(đpcm\right)\)

6 tháng 10 2015

b= ac => \(\frac{a}{b}=\frac{b}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2007b}{b+2007c}\)

=> \(\left(\frac{a+2007b}{b+2007c}\right)^2=\frac{a+2007b}{b+2007c}.\frac{a+2007b}{b+2007c}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\)

 

3 tháng 8 2017

Sửa lại đề \(CM\)\(\frac{a}{c}=\frac{\left(a+20112b\right)^2}{\left(b+2012c\right)^2}\)

Có \(a,b,c\in R;a,b,c\ne0\)và \(b^2=ac\)

Ta có \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Lại có \(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\Rightarrow\frac{a}{b}=\frac{a+2012b}{b+2012c}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\Rightarrow\frac{a^2}{ac}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

Hay \(\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

3 tháng 8 2017

\(\frac{\left(a+2012.b\right)^2}{\left(b+2012.c\right)^2}=\frac{a^2+2.2012.a.b+2012^2.b^2}{b^2+2.2012.b.c+2012^2.c^2}=\frac{a^2+2.2012.a.b+2012^2.a.c}{a.c+2.2012.b.c+2012^2.c^2}=\)

\(=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)

Xem lại đề bài

10 tháng 3 2017

\(b^2=ac\Rightarrow\dfrac{b}{a}=\dfrac{c}{b}\)

Đặt :\(\dfrac{b}{a}=\dfrac{c}{b}=k\Rightarrow b=ak\)

\(c=bk\)

\(\Rightarrow c=akk=ak^2\)

VT\(=\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)

VP \(=\dfrac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}=\dfrac{\left(a+2007ak\right)^2}{\left(b+2007bk\right)^2}\)

\(=\dfrac{\left[a\left(1+2007k\right)\right]^2}{\left[b\left(1+2007k\right)\right]^2}=\dfrac{a^2\left(1+2007k\right)^2}{b^2\left(1+2007\right)^2}=\dfrac{a^2}{b^2}=\dfrac{a^2}{\left(ak^2\right)}=\dfrac{a^2}{a^2k^2}=\dfrac{1}{k^2}\)

\(\Rightarrow VT=VP\Rightarrow\dfrac{a}{b}=\dfrac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)