Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H N M
hình không đẹp lắm, mong cậu thông cảm.
Có : AH là đường cao của tam giác ABC=> goc AHB =900
Tam giác AHB vuông tại H có AM là đường cao
=> AM.AB = AH2 (dinh li d/cao trong tam giac vuong
Tam giac AHC vuong tai H có AN là đường cao
=> AN.AC = AH2 (dinh li d/cao trong tam giac vuong
Nen AM.AB =AN.AC
b,Tam giác AHB vuông tại H,=> cot B = BH/AH
Tam giác AHC vuông tại H => cotC = CH/AH
Co H thuoc BC (gt) => BC=BH+CH =[AH(BH+CH)]/AH=AH(cot B+cotC)
Lời giải:
a)
Xét tam giác $MAH$ và $HAB$ có:
\(\left\{\begin{matrix} \widehat{AMH}=\widehat{AHB}=90^0\\ \text{góc A chung}\end{matrix}\right.\Rightarrow \triangle MAH\sim \triangle HAB(g.g)\)
Do đó: \(\frac{MA}{HA}=\frac{AH}{AB}\Rightarrow MA.AB=HA^2(1)\)
Hoàn toàn tương tự:
\(\triangle ANH\sim \triangle AHC\Rightarrow \frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2(2)\)
\(\Rightarrow AN.AC=AM.AB\) (đpcm)
b)
Với tam giác $ABC$ nhọn bất kỳ, ta có công thức sau:
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\). Khi đó \(S_{ABC}=\frac{BH.AC}{2}\)
Mà: \(\frac{BH}{AB}=\sin A\Rightarrow BH=AB.\sin A\)
\(\Rightarrow S_{ABC}=\frac{BH.AC}{2}=\frac{AB.\sin A.AC}{2}\) (đpcm)
Áp dụng công thức trên vào bài toán:
\(S_{AMN}=\frac{1}{2}.AM.AN\sin A\)
\(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
\(\Rightarrow \frac{S_{AMN}}{S_{ABC}}=\frac{AM.AN}{AB.AC}=\frac{AM.AB.AN.AC}{AB^2.AC^2}=\frac{AH^2.AH^2}{AB^2.AC^2}\) (theo phần a)
\(=\left(\frac{AH}{AB}\right)^2\left(\frac{AH}{AC}\right)^2=\sin ^2B.\sin ^2C\) (đpcm)
H A B C I K
a, xét tam giác AHB có : ^AHB = 90 và HI _|_ AB => AI.AB = AH^2
xét tam giác AHC có : ^AHC = 90 và HK _|_ AC => AK.AC = AH^2
=> AI.AB = AK.AC
b, xét tam giác AHC có ^AHC = 90 \(\Rightarrow\sin\widehat{C}=\frac{AH}{AC}\Leftrightarrow\sin^2\widehat{C}=\frac{AH^2}{AC^2}\)
\(\Rightarrow\sin^2\widehat{C}\cdot AC=\frac{AH^2}{AC}\) mà \(AH^2=AK\cdot AC\left(câua\right)\)
\(\Rightarrow\sin^2\widehat{C}\cdot AC=AK\)
a.Xét tam giác vuông AHC có đường cao HK ta có : \(AK.AC=AH^2\)
Xét tam giác vuông AHB có đường cao HI ta có : \(AI.AB=AH^2\) vậy \(AI.AB=AK.AC\)
b. ta có \(AK=\frac{AH^2}{AC}=\frac{AH^2}{AC^2}.AC=AC.sin^2C\)
c. ta có :
\(\frac{1}{4}=\frac{S_{AKI}}{S_{ABC}}=\frac{AK.AI}{AB.AC}=\frac{AK}{AB.AC}.\frac{AK.AC}{AB}=\frac{AK^2}{AB^2}\) nên \(AK=\frac{1}{2}AB\) tương tự \(AI=\frac{1}{2}AC\)
\(\Rightarrow KI=\frac{1}{2}CB\Rightarrow AH=\frac{1}{2}CB\Rightarrow\text{AH là đường trung tuyến của tam giác vuong}\)
AH vừa là đường trung tuyến vừa là đường cao nên ABC vuông cân
b: \(BD^2-CD^2\)
\(=BM^2+MD^2-CM^2-MD^2\)
\(=BM^2-CM^2=BM^2-MA^2=BA^2\)
a: AB/AC=2/3 nên HB/HC=4/9
=>HB=4/9x12=48/9=16/3cm
\(AH=\sqrt{\dfrac{16}{3}\cdot12}=\sqrt{16\cdot4}=8\left(cm\right)\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>BH(BH+9)=400
=>BH=16cm
=>BC=25cm
\(AC=\sqrt{25^2-20^2}=15\left(cm\right)\)
\(S_{ABC}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
Ta có:
\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).
Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).
Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)
a, tam giác ABH có: góc ABH=90 độ,vuông góc với AB
Suy ra: AM.AB=AH^2(Đ/L)
CMTT tam giác AHC: AN.AC=AH^2(Đ/L)
cả hai diều suy ra:AM.AB=AN.AC
phần b nghĩ ra chưa làm nốt cho