Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Min là hoán vị a=b=0 c=2 ; a=c=0 b=2 ; b=c=0 a=2 mà :vv
mà thôi Min làm đr còn max
TKS
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}\ge\frac{0-1}{2}=-\frac{1}{2}\)
Dấu \(=\)khi \(\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=1\end{cases}}\), chẳng hạn \(c=0,a=-b=\sqrt{\frac{1}{2}}\).
Ta có : \(1\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1+2\left(ab+bc+ca\right)}{3}\)
\(< =>ab+bc+ca\le1\)
Dấu "=" tự tìm nhaaaaa
Bất đẳng thức cần chứng minh tương đương với : \(\frac{2}{a^2+2}+\frac{2}{b^2+2}+\frac{2}{c^2+2}\le2\)
\(\Leftrightarrow1-\frac{a^2}{a^2+2}+1-\frac{b^2}{b^2+2}+1-\frac{c^2}{c^2+2}\le2\)
\(\Leftrightarrow\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge1\)( * )
cần chứng minh BĐT (*)
Thật vậy, Áp dụng BĐT Cô-si dạng Engel, ta có :
\(\frac{a^2}{a^2+2}+\frac{b^2}{b^2+2}+\frac{c^2}{c^2+2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}=\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=1\)
Vậy BĐT đã được chứng minh
Dấu "=" xảy ra \(\Leftrightarrow\)a = b = c = 1
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
P=\(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(+a^3+b^3+c^3-2\left(a^2b+b^2c+c^2a\right)+ab^2+bc^2+ca^2\)\(=1+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(a^3+b^3+c^3\right)\)\(-2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)\(=1+4\left(ab+bc+ca\right)-3\left(a^2b+b^2c+c^2a\right)\)
Mà \(\left(a^2b+b^2c+c^2a\right)\left(b+c+a\right)\ge\left(ab+bc+ca\right)^2\)
=> \(P\le1+4\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)^2\). Đặt \(ab+bc+ca=t\le\frac{1}{3}\)
=> \(P\le-3\left(t^2-\frac{2}{3}t+\frac{1}{9}\right)+2t+\frac{4}{3}\le-3\left(t-\frac{1}{3}\right)^2+\frac{2}{3}+\frac{4}{3}\le2\)
Dấu bằng xảy ra khi \(t=\frac{1}{3}\)<=> \(a=b=c=\frac{1}{3}\)