K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

a) Hình như đề bài phải là \(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

Ta có: \(4a^2=\left[\left(a+b-c\right)+\left(a+c-b\right)\right]^2\ge4\left(a+b-c\right)\left(a+c-b\right)\)

\(\Leftrightarrow a^2\ge\left(a+b-c\right)\left(a+c-b\right)\)

Tương tự, nhân vế với vế -> dpcm

19 tháng 10 2019

b) Ta có a + b + c = 2:))

Theo nguyên lí Dirichlet trong 3 số \(a-\frac{2}{3};b-\frac{2}{3};c-\frac{2}{3}\) luôn tồn tại 2 số đồng dấu. Giả sử đó là \(a-\frac{2}{3};b-\frac{2}{3}\).

Ta có: \(\left(a-\frac{2}{3}\right)\left(b-\frac{2}{3}\right)\ge0\Leftrightarrow2abc\ge\frac{4}{3}ac+\frac{4}{3}bc-\frac{8}{9}c\)

Do đó \(P\ge a^2+b^2+c^2+\frac{4}{3}c\left(a+b-\frac{2}{3}\right)\)

\(=\left(a+b\right)^2+c^2+\frac{4}{3}c\left(a+b+c-\frac{2}{3}-c\right)-2ab\)

\(\ge\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(a+b\right)^2}{2}\)

\(=\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(2-c\right)^2}{2}\)

\(=\frac{3c^2-4c+36}{18}=\frac{3\left(c-\frac{2}{3}\right)^2+\frac{104}{3}}{18}\ge\frac{52}{27}\)

Vậy....

P/s: Em ko chắc...Ban đầu định dồn biến nhưng thôi mệt lắm:P

27 tháng 7 2017

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

1 tháng 8 2017

a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca

((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)

T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9

Dấu = khi a=b=c=1/3

e cảm ơn anh nhìu nke hihi .Anh giỏi wa

7 tháng 8 2017

hệ quả của Schur nhé

7 tháng 8 2017

a/ Ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{cases}}\)

Lấy (1), (2), (3) nhân vế theo vế ta được

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

2 tháng 9 2016

Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.

Áp dụng bđt  \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được

\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

 

2 tháng 9 2016

chứng minh hộ mình bất đẳng thức được không

 

18 tháng 5 2018

Chỉnh sửa: \(a^2+b^2+c^2+2abc\ge\frac{52}{27}\)

19 tháng 5 2018

Theo BĐT AM-GM ta có:

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(\frac{3-\left(a+b+c\right)}{3}\right)^3=\frac{1}{27}\)

\(\Leftrightarrow ab+bc+ca+1-\left(a+b+c\right)-abc\le\frac{1}{27}\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow\left(a+b+c\right)^2-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow4-\left(a^2+b^2+c^2+2abc\right)\le\frac{56}{27}\)

\(\Leftrightarrow a^2+b^2+c^2+2abc\ge\frac{52}{27}\)