K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a2 + b2 = c2

<=> (a2 + b2)n = c2n

<=> a2n + P + b2n = c2n

Mà P > 0 => a2n + b2n =< c2n 

Dấu bằng xảy ra <=> n = 1 (làm đại ạ)

23 tháng 3 2017

cô Loan và mọi người ơi giúp tôi với

26 tháng 2 2017

hình như sai rồi bạn ạ

26 tháng 2 2017

Nguyễn Thị Bình Yên sai chỗ nào z bạn

25 tháng 10 2018

sorry ,tui chưa học

18 tháng 11 2018

sao tự nhiên lại đánh giá sai câu trả lời của mk chứ,chỉ chưa học thui mà,ai ác zậy sẽ bị mk trả thù

16 tháng 2 2020

+) Với n = 1 thì \(a^2+b^2=c^2\)(đúng với định lý Pythagoras)

+) Với n = 2 thì \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=c^4-2a^2b^2< c^4\)(đúng với n = 2)

Giả sử \(a^{2n}+b^{2n}\le c^{2n}\)

Ta sẽ chứng minh điều đó đúng với n + 1.

Ta có: \(a^{2n+2}+b^{2n+2}=\left(a^{2n}+b^{2n}\right)\left(a^2+b^2\right)-a^2.b^{2n}-a^{2n}.b^2\)

\(\le c^{2n}.c^2-a^2.b^{2n}-a^{2n}.b^2=c^{2n+2}-a^2.b^{2n}-a^{2n}.b^2< c^{2n+2}\)

Vậy BĐT đúng với n + 1

Vậy bđt đúng với mọi n > 0

Vậy \(a^{2n}+b^{2n}\le c^{2n}\)(đpcm)