Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết \(\Rightarrow a+b=abc-c=c\left(ab-1\right)\Rightarrow c=\dfrac{a+b}{ab-1}\) (hiển nhiên \(ab-1>0\) do \(a+b>0\))
Đặt \(P=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\sqrt{1+c^2}\)
\(=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\sqrt{1+\left(\dfrac{a+b}{ab-1}\right)^2}\)
\(=\dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\dfrac{\sqrt{\left(a^2+1\right)\left(b^2+1\right)}}{ab-1}\)
\(\Rightarrow P< \dfrac{\sqrt{1+a^2}}{a}+\dfrac{\sqrt{1+b^2}}{b}-\dfrac{\sqrt{\left(a^2+1\right)\left(b^2+1\right)}}{ab}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{\sqrt{1+a^2}}{a}=\sqrt{1+\dfrac{1}{a^2}}=x>1\\\dfrac{\sqrt{1+b^2}}{b}=\sqrt{1+\dfrac{1}{b^2}}=y>1\end{matrix}\right.\)
\(\Rightarrow P< x+y-xy=x+y-xy-1+1=\left(x-1\right)\left(1-y\right)+1\)
Do \(x>1;y>1\Rightarrow\left(x-1\right)\left(1-y\right)< 0\Rightarrow P< 1\)
Câu 1:
\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)
Câu 2:
\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)
\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b) Áp dụng bất đảng thức ở câu a:
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)
\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow18< S< 20\)
1. Đặt $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=T$
$\frac{a}{b+c}> \frac{a}{a+b+c}$
$\frac{b}{c+a}> \frac{b}{c+a+b}$
$\frac{c}{a+b}> \frac{c}{a+b+c}$
$\Rightarrow T> \frac{a+b+c}{a+b+c}=1$ (đpcm)
----
Xét hiệu:
$\frac{a}{b+c}-\frac{2a}{a+b+c}=\frac{-a(b+c-a)}{(b+c)(a+b+c)}<0$ theo BĐT tam giác
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}$
Tương tư: $\frac{b}{c+a}< \frac{2b}{c+a+b}$
$\frac{c}{a+b}< \frac{2c}{a+b+c}$
Cộng theo vế:
$T< \frac{2(a+b+c)}{a+b+c}=2$
$\frac{b}{a+c}
2.
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}.1\leq \frac{1}{4}(\frac{b+c}{a}+1)^2=\frac{(b+c+a)^2}{4a^2}\)
\(\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Tương tự với các phân thức còn lại và cộng theo vế:
$\Rightarrow T\geq \frac{2(a+b+c)}{a+b+c}=2$
Dấu "=" xảy ra khi $b+c=a; c+a=b; a+b=c\Rightarrow a=b=c=0$ (vô lý)
Vậy dấu "=" không xảy ra, tức là $T>2>1$ (đpcm)
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Gọi biểu thức đã cho là $A$
Vế đầu tiên:
Vì \(a,b,c>0;a+b+c=1\Rightarrow a,b,c<1\)
Do đó: \(a^2+c< a+c< a+b+c\)
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}>\frac{a}{\sqrt{a+b+c}}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}+\frac{b}{\sqrt{a+b^2}}+\frac{c}{\sqrt{c^2+b}}>\frac{a+b+c}{\sqrt{a+b+c}}=1\)
Vế sau:
Ta có: \(a^2+c=a^2+c(a+b+c)> a^2+ca+c^2\)
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}< \frac{a}{\sqrt{a^2+ca+c^2}}\). Thực hiện tương tự với các phân thức còn lại thu được:
\(\Rightarrow A< \underbrace{\frac{a}{\sqrt{a^2+ac+c^2}}+\frac{b}{\sqrt{b^2+ba+a^2}}+\frac{c}{\sqrt{c^2+bc+b^2}}}_{M}\) \((1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(M^2\leq (1+1+1)\left(\frac{a^2}{a^2+ac+c^2}+\frac{b^2}{b^2+ba+a^2}+\frac{c^2}{c^2+bc+b^2}\right)\)
\(\Leftrightarrow M^2\leq 3\left(3-\frac{c^2+ac}{a^2+ca+c^2}-\frac{ab+a^2}{b^2+ab+a^2}-\frac{bc+b^2}{c^2+bc+b^2}\right)\)
\(\leq 3\left(3-\frac{c^2+ac}{3ac}-\frac{ab+a^2}{3ab}-\frac{bc+b^2}{3bc}\right)\) (AM-GM)
\(\Leftrightarrow M^2\leq 3\left[3-1-\frac{1}{3}(\frac{c}{a}+\frac{a}{b}+\frac{b}{c})\right]\leq 3(3-1-1)\)
(Do theo BĐT AM-GM: \(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\geq 3\) )
\(\Leftrightarrow M^2\leq 3\Rightarrow M\leq \sqrt{3}\) \((2)\)
Từ \((1),(2)\Rightarrow A<\sqrt{3}< 2\)
mình có cách ngắn gọn hơn nè
ta sẽ chứng mình được \(0< a,b,c< \dfrac{1}{2}\)
\(\Rightarrow b^2< b\Rightarrow a+b^2< a+b+c=1\Rightarrow\sqrt{a+b^2}< 1\Rightarrow\dfrac{b}{\sqrt{b^2+a}}>b\)