K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tim cac so nguyen a;b;c sao cho:         a^2+b^2+c^2+4<hoac= ab+3b+2c         2.          giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)         3.      tim gia tri nho nhat cua:   \(\frac{x+8}{\sqrt{x}+1}\)              4.   tim gia tri nho nhat cua:     \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)            5.    cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ;  0<a;b;c<1   c/m    a^2+b^2+c^2+2abc<2     ...
Đọc tiếp
  1. tim cac so nguyen a;b;c sao cho:         a^2+b^2+c^2+4<hoac= ab+3b+2c

         2.          giai phuong trinh: \(\sqrt{2x+3}+\sqrt{5-2x}=3x^2-12x+14\)(neu cach giai)

         3.      tim gia tri nho nhat cua:   \(\frac{x+8}{\sqrt{x}+1}\)    

          4.   tim gia tri nho nhat cua:     \(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\) 

           5.    cho a;b;c la 3 canh cua tam giac thoa man a+b+c=2 ;  0<a;b;c<1   c/m    a^2+b^2+c^2+2abc<2

          6.     giai he phuong trinh     6(x+y)=5xy   ;    12(y+z)=7zy   ;     4(z+x)=3xz

          7.    cho a; b;c la 3 canh cua 1 tam giac c/m voi moi x,y,z     \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}>\frac{2\left(x^2+y^2+z^2\right)}{a^2+b^2+c^2}\)

       8.   cho x;y;z>0 thoa man x+y+z=2008 c/m    \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}>hoac=2008\)

 

1
12 tháng 6 2015

2)đk: x>=0 \(\frac{x+8}{\sqrt{x}+1}=\frac{x-1+9}{\sqrt{x}+1}=\frac{\left(\sqrt{x}-1\left(\sqrt{x}+1\right)\right)}{\sqrt{x}+1}+\frac{9}{\sqrt{x}+1}=\sqrt{x}-1+\frac{9}{\sqrt{x}+1}=\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\)

\(x\ge0\Leftrightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0;\frac{9}{\sqrt{x}+1}>0\). áp dụng bđt cosi cho 2 số dương \(\sqrt{x}+1;\frac{9}{\sqrt{x}+1}\) ta có:

\(\sqrt{x}+1+\frac{9}{\sqrt{x}+1}\ge2\sqrt{9}=6\Leftrightarrow\sqrt{x}+1+\frac{9}{\sqrt{x}+1}-2\ge6-2=4\)=> Min =4 <=> x=4.

nhớ l i k e

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow x^2+y^2+z^2\ge1\)\(\Rightarrow...
Đọc tiếp

CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)

CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)

ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)

ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)

\(\Rightarrow x^2+y^2+z^2\ge1\)

\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)

TA CÓ:

\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:

\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}} \)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)

DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)

 

2
10 tháng 9 2018

tự ra câu hởi tự trả lời à bạn

10 tháng 9 2018

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^22     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=14      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M...
Đọc tiếp

1      cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3  tim gia tri lon nhat cua x^2+y^2+z^2

2     cho a;b;c duong c/m    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

3      tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1

4      cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M   \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)

5    tim gia tri lon nhat cua  \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

6     phan tich da thuc thanh nhan tu   \(y-5x\sqrt{y}+6x^2\)

7    cho x;y;z>0   xy+yz+xz=1   tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)

8    cho a;b;c >0 c/m   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\)

9   rut gon     \(\sqrt{4+\sqrt{5\sqrt{3+\sqrt{5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}}\)

10   tim gia tri lon nhat cua \(\sqrt{x-2}+\sqrt{4-x}\)

11 cho a>b>c>o c/m   \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}-\sqrt{ab}<=0\)

12   cho  \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\) tinh x+y

 

11
14 tháng 7 2015

pn oi nhieu the nay ai ma giai cho het dc

bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá

25 tháng 4 2020

\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)

\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)

Áp dụng bđt AM-GM ta có

\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)

Dấu "=" xảy ra khi a=b=c=1

NV
25 tháng 4 2020

a/ Một cách đơn giản hơn:

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

\(P=\frac{x-\frac{1}{2}+y-\frac{1}{2}}{y^2}+\frac{y-\frac{1}{2}+z-\frac{1}{2}}{z^2}+\frac{z-\frac{1}{2}+x-\frac{1}{2}}{x^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P=\left(x-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-\frac{1}{2}\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge\frac{2}{xy}\left(x-\frac{1}{2}\right)+\frac{2}{yz}\left(y-\frac{1}{2}\right)+\frac{2}{zx}\left(z-\frac{1}{2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\)

\(P\ge\sqrt{3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}-1=\sqrt{3}-1\)

\(P_{min}=\sqrt{3}-1\) khi \(x=y=z=\sqrt{3}\)

20 tháng 8 2020

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 2 bạn xem viết có sai đề không?

6 tháng 11 2015

tick cho minh roi minh lam cho

6 tháng 11 2015

1) A = \(\frac{x^2+\left(y-z\right)\left(y+z\right)}{y+z}+\frac{y^2+\left(z-x\right)\left(z+x\right)}{z+x}+\frac{\left(x-y\right)\left(x+y\right)+z^2}{x+y}\)

A = \(\frac{x^2}{y+z}+\left(y-z\right)+\frac{y^2}{z+x}+\left(z-x\right)+\left(x-y\right)+\frac{z^2}{x+y}\)

A = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Nhân cả hai vế của \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) với x ta được:

\(\frac{x^2}{y+z}+\frac{yx}{z+x}+\frac{zx}{x+y}=x\)

Tương tự, ta nhân hai vế với y; z rồi cộng từng vế 2 đẳng thức với nhau ta được:

\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{z+x}+\frac{yz}{z+x}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+\left(\frac{zx}{x+y}+\frac{yz}{x+y}\right)=x+y+z\)

=> A + \(\frac{\left(x+z\right)y}{z+x}+\frac{\left(y+z\right)x}{y+z}+\frac{z\left(x+y\right)}{x+y}\) = x+ y + z

=> A + y + x + z = x + y + z

=> A = 0

Vậy A = 0