K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2020

Áp dụng \(\frac{x}{y}>\frac{x}{y+m}\)   ( x,y,m là số tự nhiên lớn hơn 0)

Ta có \(\frac{a}{a+b}>\frac{a}{a+b+c}\forall a,b,c dương\)

\(\frac{b}{b+c}>\frac{b}{b+c+a}\forall a,b,c dương\)

\(\frac{c}{c+a}>\frac{c}{c+a+b}\forall a,b,c dương\)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}\)

=> \(A>\frac{a+b+c}{a+b+c}=1\)

Vậy A>1

11 tháng 1 2020

Cảm ơn bạn Trang Nguyễn nhiều lắm! Bạn có thể giải thích giúp mình là vì sao dòng thứ 3 đếm từ dưới lên trên rồi đến dòng thứ 2 từ dưới lên trên lại là \(\frac{a+b+c}{a+b+c}\)=1 không?

22 tháng 4 2017

Ta có : 

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )

Lại có :

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)

\(\Rightarrow A< 2\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )

22 tháng 4 2017

Ta thấy: 

\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)

\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Do đó:

\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)

VÀ  \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow2>A>1\)

\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0

Vậy A không là số tự nhiên với a,b,c,d > 0

27 tháng 10 2017

Tính chất tỉ số: 
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*) 
cm: 
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y 
- - - - - 
với các số a, b, c ta có: a < a+b ; b < b+c ; c < c+a 
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có: 

A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b) 

=> A < 2(a+b+c)/(a+b+c) = 2 

mặt khác ta có: 
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b) 
=> A > (a+b+c)/(a+b+c) = 1 

Tóm lại ta có: 1 < A < 2 => A không là số tự nhiên

16 tháng 11 2017

        Chúc bạn học giỏi

3 tháng 4 2016

2 > M >/ 4/3  => M không là số N

25 tháng 8 2016

Do a;b;c và d là các số tự nhiên >0 => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số tự nhiên

25 tháng 8 2016

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d

A > a+b+c+d/a+b+c+d

A > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2 (2)

Từ (1) và (2) => 1 < A < 2

=> A không phải số nguyên ( đpcm)

12 tháng 2 2017

1 ) Vì b + c + a > b => \(\frac{a}{b}>\frac{a}{b+c+a}\)

2 ) Ta có :

\(\frac{a}{b}>\frac{a}{b+c+a}\) 

\(\frac{b}{c}>\frac{b}{b+c+a}\)

\(\frac{c}{a}>\frac{c}{b+c+a}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{b+c+a}=\frac{a+b+c}{b+c+a}=1\) (ddpcm)

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

19 tháng 2 2017

Xét:A= \(\frac{a}{b}-\frac{a}{c}=a\left(\frac{1}{b}-\frac{1}{c}\right)=\frac{a\left(c-b\right)}{bc}\)

Vậy Nếu b<c => A>0 vậy phân số nào có mẫu nhỏ hơn thì lớn hơn với tử dương và cùng tử

23 tháng 8 2015

vi a>c

=>a2>c2

mà a/b=c/d

=>ad=bc

do đó a2>c2

=>ad+a2>bc+c2

=>a(a+d)>c(b+c)

mà a>c(theo bài ra)

=>a+d>b+c(dpcm)