K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2021

* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)

Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)

Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)

Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 3 2021

cảm ơn ạ

\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)

31 tháng 5 2020

BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)

Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)

Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)

\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)

Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)

Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1

NV
27 tháng 4 2020

\(\frac{1}{2a-1}+\frac{1}{1}\ge\frac{4}{2a}=\frac{2}{a}\) ; \(\frac{1}{2b-1}+\frac{1}{1}\ge\frac{2}{b}\) ; \(\frac{1}{2c-1}+\frac{1}{1}\ge\frac{2}{c}\)

\(\Rightarrow VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\Rightarrow VT\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
16 tháng 11 2019

a/ Đề sai, đề đúng phải là \(p=\frac{a+b+c}{2}\)

b/ \(\Leftrightarrow\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)

\(VT=1-\frac{a^2b}{1+1+a^2b}+1-\frac{b^2c}{1+1+b^2c}+1-\frac{c^2a}{1+1+c^2a}\)

\(VT\ge3-\left(\frac{a^2b}{3\sqrt[3]{a^2b}}+\frac{b^2c}{3\sqrt[3]{b^2c}}+\frac{c^2a}{3\sqrt[3]{c^2a}}\right)\)

\(VT\ge3-\frac{1}{9}\left(3\sqrt[3]{a^2.ab.ab}+3\sqrt[3]{b^2.bc.bc}+3\sqrt[3]{c^2.ca.ca}\right)\)

\(VT\ge3-\frac{1}{9}\left(a^2+2ab+b^2+2bc+c^2+2ca\right)\)

\(VT\ge3-\frac{1}{9}\left(a+b+c\right)^2=2\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)