K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

BĐT cần chứng minh tương đương với

\(\left(1-\frac{a^5-a^2}{a^5+b^2+c^2}\right)+\left(1-\frac{b^5-b^2}{b^5+c^2+a^2}\right)+\left(1-\frac{c^5-c^2}{c^5+a^2+b^2}\right)\le3\)

hay \(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Từ \(abc\ge1\) ta có:

\(\frac{1}{a^5+b^2+c^2}\le\frac{1}{\frac{a^5}{abc}+b^2+c^2}=\frac{1}{\frac{a^4}{bc}+b^2+c^2}\)

\(\le\frac{1}{\frac{2a^4}{b^2+c^2}+b^2+c^2}=\frac{b^2+c^2}{2a^4+\left(b^2+c^2\right)^2}\)

Do \(4u^2+v^2\ge4uv\Leftrightarrow4u^2+v^2\ge\frac{2}{3}\left(u+v\right)^2\)nên 

\(2a^4+\left(b^2+c^2\right)^2\ge\frac{2}{3}\left(a^2+b^2+c^2\right)^2\)

Suy ra \(\frac{1}{a^5+b^2+c^2}\le\frac{3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Tương tự ta có \(\frac{1}{b^5+c^2+a^2}\le\frac{3\left(c^2+a^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

và \(\frac{1}{c^5+a^2+b^2}\le\frac{3\left(a^2+b^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Cộng ba vế của các BĐT trên ta được

\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Vậy \(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

15 tháng 9 2019

\(a^5+a+a+a>=4\sqrt[4]{a^8}=4a^2\)

Làm tương tự rồi cộng vế ta được:

\(VT\ge4\left(a^2+b^2+c^2\right)-3\left(a+b+c\right)\ge4\left(a^2+b^2+c^2\right)-3\sqrt{3\left(a^2+b^2+c^2\right)}=4.3-3\sqrt{3.3}=3\)

10 tháng 9 2016

Đề là 

Cho \(a;b;c\ge0\) thỏa mãn a+b+c = 1

Cmr : \(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\ge\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}\) ak bạn 

18 tháng 9 2016

Ta có:a+b+c=1

\(đpcm\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{2}{a+2b+c}+\frac{2}{2a+b+c}+\frac{2}{a+b+2c}\)(*)

Áp dụng BĐT Bunhiacopxki:

\(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)(1)

Tương tự:\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a+b+2c}\)(2)

\(\frac{1}{a+b}+\frac{1}{c+a}\ge\frac{4}{2a+b+c}\)(3)

Cộng theo từng vế của (1);(2);(3) ta đc:(*)(đpcm)

Dấu ''='' xảy ra\(\Leftrightarrow a=b=c=\frac{1}{3}\)

 

1 tháng 3 2020

Áp dụng cosi ta có \(a.a.a.b.b\le\frac{3a^5+2b^5}{5};b.b.b.a.a\le\frac{3b^5+2a^5}{5}\)

=> \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

Khi đó

\(VT\le\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}}\)

Áp dụng BĐT buniacoxki  ta có :

\((\frac{1}{ab\sqrt{a+b}}+\frac{1}{bc\sqrt{b+c}}+\frac{1}{ac\sqrt{a+c}})^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\frac{1}{b^2\left(a+b\right)}+\frac{1}{c^2\left(b+c\right)}+...\right)\)

Mà 1/a^2+1/b^2+1/c^2=1(giả thiết)

=> \(VT\le VP\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=can(3)

2 tháng 3 2020

hay quá 

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)

Áp dụng bất đẳng thức AM-GM:

\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)

Cũng theo AM-GM

\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)

Dấu $=$ xảy ra khi \(a=b=c=1\)

3 tháng 1 2019

3/ Áp dụng bất đẳng thức AM-GM, ta có :

\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)

\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)

\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)

Cộng 3 vế của BĐT trên ta có :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)

Tiếp tục áp dụng BĐT AM-GM:

\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)

Do đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$