Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM-GM cho 3 số :
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3\left(b+1\right)\left(c+1\right)}{\left(b+1\right)\left(c+1\right)8^2}}=\frac{3a}{4}\)
Tương tự ta có \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3c}{4}\)
Cộng theo vế các bđt trên ta được :
\(VT+2\left(\frac{a}{8}+\frac{b}{8}+\frac{c}{8}+\frac{3}{8}\right)\ge\frac{3}{4}\left(a+b+c\right)\)
\(< =>VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{6}{8}\)
\(=\frac{1}{2}\left(a+b+c\right)-\frac{6}{8}\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{6}{8}=\frac{12-6}{8}=\frac{6}{8}=\frac{3}{4}\)
Dấu "=" xảy ra \(< =>a=b=c=1\)
Done !
Bn thiếu đề nhé : \(DK:abc=1\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\)
Tương tự \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3}{4}b\)
Và .\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)
Cộng vế với vế của các bđt trên ta được :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}+\frac{1}{4}\left(a+b+c\right)+\frac{3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) (ĐPCM)
xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được ,
Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)
=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)
Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)
=> A>=\(\frac{3}{4}\)
mình làm hơi tắt cậu chịu khó đọc nhé
bài này Áp dụng bất đẳng thức cô si nhé
đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)
cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)
mà
Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html
Bạn tham khảo tại đây:
Câu hỏi của Trần Hữu Ngọc Minh - Toán lớp 9 - Học toán với OnlineMath
Áp dụng BĐT Cosi ta được:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)64}}=\frac{3a}{4}̸\)
Tương tự \(\hept{\begin{cases}\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
Cộng theo từng vế BĐT trên ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{a+b+c}{2}\)
Vì \(a+b+c\ge3\sqrt[3]{abc}=3\)do đó:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c
a=b=c=1 sai
Xem lại cái đề: