Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành
Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
CMR: $xyz=1$
-----------------------------
Có:
$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$
\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)
\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)
Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$
$\Rightarrow 1=\frac{1}{x^2y^2z^2}$
$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)
Ta có đpcm.
https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,+b,+c+tho%E1%BA%A3+m%C3%A3n:+abc+a+b=3ababc+a+b=3ababc+a+b=3ab.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+%E2%88%9Aaba+b+1+%E2%88%9Abbc+c+1+%E2%88%9Aaca+c+1%E2%89%A5%E2%88%9A3aba+b+1+bbc+c+1+aca+c+1%E2%89%A53\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{b}{bc+c+1}}+\sqrt{\dfrac{a}{ca+c+1}}\ge\sqrt{3}&id=695796
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow VT\ge3\sqrt[6]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\)
Chứng minh \(3\sqrt[6]{\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)}}\ge3\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left(c+ab\right)\left(a+bc\right)\le\dfrac{\left(c+a+ab+bc\right)^2}{4}=\dfrac{\left[b\left(a+c\right)+c+a\right]^2}{4}=\dfrac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Thiết lập tương tự và thu lại ta có
\(\Rightarrow\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\le\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\left(b+1\right)^2\left(a+1\right)^2\left(c+1\right)^2}{64}\)
\(\Rightarrow64\left(c+ab\right)^2\left(a+bc\right)^2\left(b+ac\right)^2\le\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\left(b+1\right)^2\left(c+1\right)^2\left(a+1\right)^2\)
\(\Leftrightarrow8\left(c+ab\right)\left(a+bc\right)\left(b+ac\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(b+1\right)\left(c+1\right)\left(a+1\right)\)
Cần chứng minh rằng \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le8\)
Áp dụng bất đẳng thức Cauchy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\dfrac{3+3}{3}\right)^3=8\left(đpcm\right)\)
\(\Rightarrowđpcm\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
Chứng minh rằng \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
\(\Leftrightarrow18\ge3\left(3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}\right)\)
\(\Leftrightarrow18\ge9+3\sqrt[3]{bc}+3\sqrt[3]{ca}+3\sqrt[3]{ab}\)
\(\Leftrightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\left\{{}\begin{matrix}a+b+1\ge3\sqrt[3]{ab}\\b+c+1\ge3\sqrt[3]{bc}\\c+a+1\ge3\sqrt[3]{ca}\end{matrix}\right.\)
\(\Rightarrow2\left(a+b+c\right)+3\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\)
\(\Rightarrow9\ge3\sqrt[3]{ab}+3\sqrt[3]{bc}+3\sqrt[3]{ca}\) ( đpcm )
Vì \(\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)
Mà \(\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{9}{3+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)
\(\Rightarrow\dfrac{a^2}{a+\sqrt[3]{bc}}+\dfrac{b^2}{b+\sqrt[3]{ca}}+\dfrac{c^2}{c+\sqrt[3]{ab}}\ge\dfrac{3}{2}\)( đpcm )
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(\sum\frac{a^2}{a+\sqrt[3]{bc}}\geq\sum\frac{a^2}{a+\frac{b+c+1}{3}}=\sum\frac{9a^2}{3(3a+b+c)+a+b+c}\)
\(=\sum\frac{9a^2}{10a+4b+4c}\geq\frac{9(a+b+c)^2}{(10a+4b+4c)}=\frac{9(a+b+c)^2}{18(a+b+c)}=\frac{3}{2}\)
Lời giải:
Áp dụng BĐT AM-GM (Cô-si)
\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)
\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)
\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)
Cộng theo vế những BĐT vừa thu được ta có:
\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)
\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$