K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Ta có \(\sqrt{8a^2+56}\)\(\sqrt{8\left(a^2+7\right)}\)\(\sqrt{8\left(a^2+ab+2bc+2ca\right)}\)=2. \(\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le\) 2(a+b)+(a+2c) = 3a+2b+2c

tương tự \(\sqrt{8b^2+56}\)\(\le\) 2a+3b+2c

\(\sqrt{4c^2+7}\) =\(\sqrt{4c^2+ab+2ac+2bc}\)\(\sqrt{\left(a+2c\right)\left(b+2c\right)}\)\(\le\)(a+b+4c)/2

mẫu số \(\le\)3a+2b+2c+2a+3b+2c+a/2+b/2+2c=(11a+11b+12c)/2

 \(\Rightarrow\)  Q\(\ge\) 2

dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab+2bc+2ca=7\\2\left(a+b\right)=a+2c=b+2c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

Vây...

14 tháng 12 2020

Áp dụng giả thiết và bất đẳng thức AM - GM, ta được: \(\sqrt{8a^2+48}=\sqrt{8\left(a^2+6\right)}=\sqrt{8\left(a^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le\left(2a+2b\right)+\left(a+2c\right)=3a+2b+2c\)\(\sqrt{8b^2+48}=\sqrt{8\left(b^2+6\right)}=\sqrt{8\left(b^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(b+2c\right)}\le\left(2a+2b\right)+\left(b+2c\right)=2a+3b+2c\)\(\sqrt{4c^2+6}=\sqrt{4c^2+ab+2bc+2ca}=\sqrt{\left(2c+a\right)\left(2c+b\right)}\le\frac{\left(2c+a\right)+\left(2c+b\right)}{2}=\frac{4c+a+b}{2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}\le\frac{11}{2}a+\frac{11}{2}b+6c\)

\(\Rightarrow\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\ge\frac{11a+11b+12c}{\frac{11}{2}a+\frac{11}{2}b+6c}=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}ab+2bc+2ca=6\\a+2b=2c;b+2a=2c;a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\sqrt{\frac{6}{7}}\\c=\frac{3\sqrt{42}}{14}\end{cases}}\)

2 tháng 6 2019

\(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2bc+2ac\right)}\)\(=\sqrt{8\left(a+b\right)\left(a+2c\right)}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\)

Áp dụng BĐT AM-GM cho các số không âm:

\(\sqrt{8a^2+56}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\le\frac{4\left(a+b\right)+2\left(a+2c\right)}{2}\)

\(\Rightarrow\)\(\sqrt{8a^2+56}\)\(\le3a+2b+2c\)

Tương tự:

\(\sqrt{8b^2+56}\le2a+3b+2c\),\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

\(\Rightarrow\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}\le\frac{11a+11b+12c}{2}\)

\(\Rightarrow P\ge\frac{11a+11b+12c}{\frac{11a+11b+12c}{2}}=2\)

\(''=''\Leftrightarrow a=b=\frac{2c}{3}=1\)

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

26 tháng 4 2020

Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)

Áp dụng BĐT tương tự ta được đẳng thức

\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)

Áp dụng BĐT Cauchy ta lại có

\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)

Cộng theo vế ta được

\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)

Vậy MinP=\(\frac{3}{2}\)

26 tháng 4 2020

phần áp dụng BĐT lần 2 mình chưa hiều lắm

2 tháng 7 2020

Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)

Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)

Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)

Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)

Vậy Min P=1

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1