Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x−y)2=(x+y)2−4xy=2012−4xy(x−y)2=(x+y)2−4xy=2012−4xy
Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y||x−y|
Không mất tính tổng quát giả sử: x≥yx≥y thì: x≥101x≥101; y≤100y≤100
Khi đó: |x−y|=x−y=x+y−2y=201−2y|x−y|=x−y=x+y−2y=201−2y
Ta có: 1≤y≤1001≤y≤100 nên: 1≤|x−y|=201−2y≤1991≤|x−y|=201−2y≤199
Lập luận đi ngược lại thì tìm được các cực trị
dùng cô si thôi
\(a^4+b^2\ge2a^2b;b^4+c^2\ge2b^2c;c^4+a^2\ge2c^2a\)
\(a^2b^2+a^2\ge2a^2b;b^2c^2+b^2\ge2b^2c;c^2a^2+c^2\ge2c^2a\)
từ 2 cái trên =>\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{3\left(ab+bc+ca\right)}{\left(a^2+b^2+c^2\right)^2}\)
đặt t=a2+b2+c2\(\ge\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\left[2\left(t-\frac{1}{2}\right)^2-\frac{19}{2}\right]\left(t-3\right)\ge0\)
\(\Leftrightarrow2t^3-8t^2-3t+27\ge0\)
\(\Leftrightarrow\frac{2t^3-3t+27}{2t^2}\ge4\Rightarrow P\ge4\)
Ta có: (x−y)2=(x+y)2−4xy=2012−4xy(x−y)2=(x+y)2−4xy=2012−4xy
Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(x−y)2=(|x−y|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |x−y||x−y|
Không mất tính tổng quát giả sử: x≥yx≥y thì: x≥101x≥101; y≤100y≤100
Khi đó: |x−y|=x−y=x+y−2y=201−2y|x−y|=x−y=x+y−2y=201−2y
Ta có: 1≤y≤1001≤y≤100 nên: 1≤|x−y|=201−2y≤1991≤|x−y|=201−2y≤199
Lập luận đi ngược lại thì tìm được các cực trị
https://diendan.hocmai.vn/threads/tim-gtnn-a-f-14-a-2-b-2-c-2-dfrac-ab-bc-ca-a-2b-b-2c-c-2a.311642/
Bai lam chac tuong tu
GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)
Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1
\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)
Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)
Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3
Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)
\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)
\(=\sqrt{3}\text{}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)
Đặt \(a^2+b^2+c^2=t\)
Ta đi chứng minh: \(t=a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)(*)
Thật vậy: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3+b^3+c^3\right)+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)(**)
Áp dụng BĐT AM - GM, ta có: \(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)(do a,b dương) (1)
Tương tự ta có: \(b^3+bc^2\ge2b^2c\left(2\right);c^3+2ca^2\ge2c^2a\left(3\right)\)
Cộng theo vế của các BĐT (1), (2), (3), ta được: \(\left(a^3+b^3+c^3\right)+\left(ab^2+bc^2+ca^2\right)\ge2\left(a^2b+2b^2c+2c^2a\right)\)(***)
Từ (**) và (***) suy ra \(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\). Do đó (*) đúng.
Ta có: \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}=t+\frac{9-t}{2t}\)với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Bài toán trở thành tìm GTNN của \(f\left(t\right)=t+\frac{9-t}{2t}\)với \(t\ge3\)
Ta chứng minh \(f\left(t\right)\ge f\left(3\right)\Leftrightarrow t+\frac{9-t}{2t}\ge4\Leftrightarrow\frac{\left(t-3\right)\left(2t-3\right)}{2t}\ge0\)(đúng với mọi \(t\ge3\))
Vậy \(MinP=4\)khi t = 3 hay a = b = c = 1
Cần các cao nhân giải khác phương pháp SS
Không làm theo cách đánh giá 3(a2b+b2c+c2a)\(\le\)(a+b+c)(a2+b2+c2)=3(a2+b2+c2)
Ai làm được xin cảm ơn trước
#)Giải :
Ta có : \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=a^3+b^3+c^3+a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
Áp dụng BĐT Cauchy :
\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}\)
Đặt \(t=a^2+b^2+c^2\Rightarrow t\ge3\)
\(\Rightarrow P\ge t+\frac{9-t}{2t}=\frac{t}{2}+\frac{9}{2t}+\frac{t}{2}-\frac{1}{2}\ge3+\frac{3}{2}-\frac{1}{2}=4\)
\(\Rightarrow P\ge4\Rightarrow P_{min}=4\)
Dấu ''='' xảy ra khi a = b = c = 1
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
sos là ra ez
là sao ?