\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) ( Svac-xơ, Cauchy các kiểu -,- ) 

\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}}{2}=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\) ( đpcm ) 

... 

3 tháng 1 2019

\(2VP=\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)

\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VT\)

Từ đây,ta có: \(2VT\ge2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)

15 tháng 12 2018

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1\right)^2}{b+c}=\dfrac{4}{b+c}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{\left(1+1\right)^2}{c+a}=\dfrac{4}{c+a}\)

Cộng theo vế và rút gọn suy ra đpcm

\("="\Leftrightarrow a=b=c\)

19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong

7 tháng 12 2017

1) Đặt T là vế trái của BĐT

Áp dụng BĐT Cauchy-Schwarz và AM-GM, ta có:

\(T=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{1}{x^2+y^2+z^2}=1\)

Vậy ta có đpcm.Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

7 tháng 12 2017

3)b) Đặt T là vế trái, áp dụng AM-GM ta có:

\(b+c=\left(b+c\right)\left(a+b+c\right)^2\ge\left(b+c\right)4a\left(b+c\right)=4a\left(b+c\right)^2\ge16abc\)

5 tháng 10 2018

Bài 1:

Theo bất đẳng thức Cauchy, ta có:

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2}{b+c}.\dfrac{b+c}{4}}=2\sqrt{\dfrac{a^2}{4}}=a\) (1)

Chứng minh tương tự:

\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) (2)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\) (3)

Từ (1), (2) và (3) suy ra:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b+c}{4}+\dfrac{c+a}{4}+\dfrac{a+b}{4}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c\)

5 tháng 10 2018

Bài 2:

Theo bđt Cauchy ta có:

\(1+\dfrac{1}{a}=\dfrac{a+1}{a}=\dfrac{2a+b+c}{a}\ge\dfrac{2a+2\sqrt{bc}}{a}\ge\dfrac{2\left(a+\sqrt{bc}\right)}{a}\ge\dfrac{4\sqrt{a\sqrt{bc}}}{a}\)

\(\Rightarrow1+\dfrac{1}{a}\ge4\sqrt[4]{\dfrac{bc}{a^2}}\)

Chứng minh tương tự:

\(1+\dfrac{1}{b}\ge4\sqrt[4]{\dfrac{ca}{b^2}}\)

\(1+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{ab}{c^2}}\)

Nhân vế theo vế 3 bđt trên ta được:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge4^3\sqrt[4]{\dfrac{\left(abc\right)^2}{a^2b^2c^2}}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\left(dpcm\right)\)

11 tháng 12 2018

Áp dụng BĐT Cauchy - Schwarz dạng Engel:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

22 tháng 7 2018

Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{4}{a+b}\) ( \(a,b>0\) )

\(\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{4}{b+c}\left(b;c>0\right)\)

\(\dfrac{1}{a}+\dfrac{1}{c}\text{≥}\dfrac{4}{a+c}\left(a;c>0\right)\)

Cộng từng vế của các BĐT trên , ta có :

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{a+c}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)

22 tháng 7 2018

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế theo vế ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

\(\Rightarrowđpcm\)