K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\ge3\)

\(\Rightarrow2-\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+2-\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+2-\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2+b^2}\le3\)

Cần chứng minh BĐT ở dòng thứ 2 đúng

\(\Rightarrow\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\frac{\left(c+a\right)^2}{2b^2+c^2+a^2}+\frac{\left(a+b\right)^2}{2c^2+a^2+b^2}\le3\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}=\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)

Tương tự cho 2 BĐT còn lại r` cộng theo vế:

\(\RightarrowΣ\frac{\left(b+c\right)^2}{2a^2+b^2+c^2}\leΣ\frac{b^2}{a^2+b^2}+Σ\frac{c^2}{a^2+c^2}=3\)

18 tháng 5 2017

xin lỗi,mk mới hok lp 5

\(chúcbạnhọcgiỏi\)

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Một bài rất easy để dùng sos đây ạ!1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)Suy...
Đọc tiếp

Một bài rất easy để dùng sos đây ạ!

1/Cho a, b, c > 0. Chứng minh rằng:\(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\) 

Để ý rằng theo Bunhiacopxki ta có: \(\left(1+1+1\right)\left(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(c+a\right)^2}\right)\ge\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\right)^2=VT^2\)

Suy ra \(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\) (do các hai vế đều dương)

Như vậy chúng ta sẽ được một bài toán rộng hơn bài trên,nhưng chắc hẳn rằng khi làm xong bài trên các bạn có thể giải ngay bài này chỉ qua biến đổi bđt đơn giản như trên! :D

Bài toán 2\(\sqrt{\frac{12a^2}{\left(b+c\right)^2}+\frac{12b^2}{\left(c+a\right)^2}+\frac{12c^2}{\left(a+b\right)^2}}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)

 

 

 

0
NV
14 tháng 6 2020

\(x^2+y^2+z^2+2xy+2yz+2zx+2x^2-2x\left(y+z\right)+y^2+z^2=36\)

\(\Leftrightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+y^2+z^2=36\)

\(\Rightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+\frac{1}{2}\left(y+z\right)^2\le36\)

\(\Rightarrow\left(x+y+z\right)^2+\frac{1}{2}\left[4x^2-4x\left(y+z\right)+\left(y+z\right)^2\right]\le36\)

\(\Leftrightarrow\left(x+y+z\right)^2+\frac{1}{2}\left(2x-y-z\right)^2\le36\)

\(\Rightarrow\left(x+y+z\right)^2\le36-\frac{1}{2}\left(2x-y-z\right)^2\le36\)

\(\Rightarrow-6\le x+y+z\le6\)

\(A_{min}=-6\) khi \(x=y=z=-2\)

\(A_{max}=6\) khi \(x=y=z=2\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

1 tháng 3 2020

\(\frac{a+b+c}{9}\)nha

Đặt \(P=\frac{a^3}{\left(b+2c\right)^2}+\frac{b^3}{\left(c+2a\right)^2}+\frac{c^3}{\left(a+2b\right)^2}\)

Áp dụng bđt AM-GM cho 3 số dương a,b,c ta được:
\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)^2}.\frac{b+2c}{27}.\frac{b+2c}{27}}=\frac{a}{3}\)

\(\frac{b^3}{\left(c+2a\right)^2}+\frac{c+2a}{27}+\frac{c+2a}{27}\ge3\sqrt[3]{\frac{b^3}{\left(c+2a\right)^2}.\frac{c+2a}{27}.\frac{c+2a}{27}}=\frac{b}{3}\)

\(\frac{c^3}{\left(a+2b\right)^2}+\frac{a+2b}{27}+\frac{a+2b}{27}\ge3\sqrt[3]{\frac{c^3}{\left(a+2b\right)^2}.\frac{a+2b}{27}.\frac{a+2b}{27}}=\frac{c}{3}\)

Cộng từng vế ta được: 

\(P+\)\(\frac{6\left(a+b+c\right)}{27}\ge\frac{a+b+c}{3}\)

\(\Rightarrow P\ge\frac{a+b+c}{9}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

NV
12 tháng 6 2020

Đặt vế trái là P

\(P=\sum\frac{2\left(b+c-a\right)^2}{2a^2+\left(b+c\right)^2}\ge\sum\frac{2\left(b+c-a\right)^2}{2a^2+2\left(b^2+c^2\right)}=\frac{\left(b+c-a\right)^2+\left(c+a-b\right)^2+\left(a+b-c\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{3\left(a^2+b^2+c^2\right)-2ab-2ac-2bc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{a^2+b^2+c^2}\)

\(P\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 5 2020

Mọi người ơi, giúp mik vs mik cần rất gấpkhocroi

23 tháng 5 2020

đề nó như thế mà hihi?

23 tháng 5 2020

Dụng Bunihiacopxki là ngược dấu rồi nhé?