K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

=> a+b-c+a-b+c-a+b+c = 15+21-2015

=> a+b+c = -1979

=> a = 18 ; b = -1000 ; c = -997

Tk mk nha

12 tháng 3 2020

           a, Theo đề ra ta có :

                  (a x b) x (b x c) = (-35) x 7

                                           = -245(1)

                 Mà a x b x c= 35(2)

            Lấy(1) :(2) => b = -7

                           => c = -1

                           => a = 5

Phần b, tương tự nhé!

4 tháng 3 2020

a) ta có 

abcd=120 mà abc=-30 nên -30.d=120 suy ra d=-4

abc=-30 mà ab=-6 nên -6.c=-30 suy ra c=5

bc=-15 mà c=5 suy ra b=-3

ab=-6 mà b=-3 suy ra a.(-3) = -6 suy ra a=2

b) a+b=-1, a+c=6, b+c=1 nên 2a + 2b+2c= -1 + 6 + 1 = 6

suy ra a+b+c = 3 mà a+b= -1 suy ra c=4

suy ra a=6-4=2; b=1-4 = -3

c) a+b+c=-6, b+c+d = -9, c+d+a = -8, d+a+b = -7 nên 3a+3b+3c+3d = -30

suy ra a+b+c+d= -10

mà a+b+c = -6 

suy ra d=-4

nên b+c=5, a+c=-4, a+b = -3 suy ra 2a+2b+2c = -2 suy ra a+b+c=-1

suy ra a=-6, b= 3, c= 2

a, d=-4     c=5     b=-3     a=2

b, c=4     a=2      b=-3

c, d=-4   a=-1     c=-3    b=-2

13 tháng 8 2018

  a+b=c+d => a=c+d-b 
thay vào ab+1=cd 
=> (c+d-b)*b+1=cd 
<=> cb+db-cd+1-b^2=0 
<=> b(c-b)-d(c-b)+1=0 
<=> (b-d)(c-b)=-1 
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 
mà (b-d)(c-b)=-1 nên có 2 TH: 
TH1: b-d=-1 và c-b=1 
<=> d=b+1 và c=b+1 
=> c=d 
TH2: b-d=1 và c-b=-1 
<=> d=b-1 và c=b-1 
=> c=d 
Vậy từ 2 TH ta có c=d.

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

8 tháng 7 2017

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

6 tháng 1 2024

Ta có abc = 3. (a+b+c) 

⇒abc chia hết cho 3

 

Giả sử a chia hết cho 3. Do a là số nguyên tố 

⇒ a=3

 

3bc=3(3+b+c) 

⇒ bc=3+b+c

 

bc-b = 3+c 

⇒ b(c-1) = 4+(c-1) 

⇒ (b-1)(c-1) = 4

 

⇒ (b,c) 

∈ {(3,3);(2,5)}

 

Vậy (a,b,c

∈ {(3,3,3) ; (2,3,5)}

22 tháng 7 2015

Ta có abc = 3. (a+b+c) \(\Rightarrow\)abc chia hết cho 3

Giả sử a chia hết cho 3. Do a là số nguyên tố \(\Rightarrow\) a=3

3bc=3(3+b+c) \(\Rightarrow\) bc=3+b+c

bc-b = 3+c \(\Rightarrow\) b(c-1) = 4+(c-1) \(\Rightarrow\) (b-1)(c-1) = 4

\(\Rightarrow\) (b,c) \(\in\) {(3,3);(2,5)}

Vậy (a,b,c) \(\in\) {(3,3,3) ; (2,3,5)}

15 tháng 10 2023

3;3;3/2;3;5