K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười

11 tháng 5 2022

BN THAM KHẢO:

undefined

 

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi