K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

4 tháng 2 2021

OMG !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

11 tháng 5 2017

Theo BĐT AM-GM ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge\left(a+b+c\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\left(1\right)\)

Do 2 BĐT trên cùng có dấu "=" khi \(a=b=c\)

Dễ dàng theo Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\left(2\right)\). Giờ cần c/m

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Nên cũng chỉ cần chỉ ra

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (cmt)

\(\Rightarrow\)\(\left(a+b+c\right)^2\)\(\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

Dễ thấy \(a+b+c\ne0\) suy ra \(a+b+c\ge\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

BĐT cuối đúng theo AM-GM (cmt) \((3)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\) ta có ĐPCM

P/s:bài này liếc phát ra luôn mà quanh đi quẩn lại chỉ mấy BĐT cơ bản :D

11 tháng 5 2017

C/m lại phần đầu

Cần c/m \((a^2+b^2+c^2)(ab+ac+bc)+\sum_{cyc}(a^2-b^2)^2\geq(a^2+b^2+c^2)^2\)

\(\Leftrightarrow \sum_{cyc}(a^4+a^3b+a^3c-4a^2b^2+a^2bc)\geq0\)

\(\Leftrightarrow \sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+2\sum_{cyc}ab(a-b)^2\geq0\)

Đúng theo Schur

2 tháng 8 2020

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c