K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)

21 tháng 2 2020

\(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đến đây có 2 cách:

Cách 1:Đặt k.Dài,tự làm

Cách 2:

Áp dụng DTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

21 tháng 2 2020

ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)

ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)

từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)

11 tháng 12 2019

Ta có:

b2=a.c                                            c2=b.d

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)                              \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) (1)

\(\Rightarrow\hept{\begin{cases}\left(1\right)=\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}\\\left(1\right)=\frac{a+b-c}{b+c-d}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\end{cases}}\)

\(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Vậy \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)

Ta có: \(b^2=a\cdot c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)

         \(c^2=b\cdot d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)(3)

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)

\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(4)

Từ (3) và (4) \(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(đpcm)

21 tháng 7 2016

Ta có: b2=a.c => \(\frac{a}{b}=\frac{b}{c}\)(1)

          c2=b.d =>\(\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1), (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

               =>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)

               => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( tính chất dãy tỉ số bằng nhau)

5 tháng 11 2021

Ta có:

\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)

\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)

26 tháng 8 2016

b2 = ac  => \(\frac{a}{b}=\frac{b}{c}\)và c2 = bd\(\frac{c}{d}=\frac{b}{c}\) =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}=k^3\)

Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất tỉ lê thức ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

\(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(=k^3\right)\)

14 tháng 12 2016

Giải:

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (1)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)

10 tháng 10 2021

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

10 tháng 10 2021

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^

8 tháng 10 2018

 Phùng Minh Quân không biết thì đừng tk sai tôi nhá!

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\) (1)

Mặt khác,áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\) (2)

Từ (1) và (2) ta có: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(đpcm\right)\)

8 tháng 10 2018

Câu b) là một câu hỏi rất hay,cũng khá hóc búa một tí. Nhưng dùng năng lực rinnegan ta thấy ngay bài này chỉ áp dụng t/c cơ bản của phân số với t/c dãy tỉ số bằng nhau

                        Giải 

b) Từ a) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\). Áp dụng tính chất cơ bản của phân số,ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{8b^3}{8c^3}=\frac{125c^3}{125d^3}\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}\) (t/c dãy tỉ số bằng nhau)

Do vậy điều cần chứng minh \(\Leftrightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(1)

Mặt khác,theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (2)

Từ (1) và (2) ta có: \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\Rightarrow\frac{a}{d}=\frac{a^3+8b^3+125c^3}{b^3+8c^3+125d^3}^{\left(đpcm\right)}\)