\(\sqrt{2012a+\frac{\left(b-c\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề kiểu gì vậy

15 tháng 8 2017

Em ghi vội nó hơi sai

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)

NV
17 tháng 5 2020

\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{2}}\)

\(=\sqrt{\frac{4a^2+4ab+4ac+b^2+c^2-2bc}{2}}=\sqrt{\frac{\left(2a+b+c\right)^2-4bc}{2}}\le\sqrt{\frac{\left(2a+b+c\right)^2}{2}}=\frac{1}{\sqrt{2}}\left(2a+b+c\right)\)

Tương tự:

\(\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+2b+c\right)\) ; \(\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le\frac{1}{\sqrt{2}}\left(a+b+2c\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{\sqrt{2}}\left(4a+4b+4c\right)=2\sqrt{2}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1006;0;0\right)\) và hoán vị

24 tháng 4 2017

Gọi VT là P

Ta có:

\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\le\dfrac{2b+c+a}{\sqrt{2}}\left(2\right)\\\sqrt{2012c+\dfrac{\left(a-b\right)^2}{2}}\le\dfrac{2c+a+b}{\sqrt{2}}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(P\le\dfrac{2a+b+c}{\sqrt{2}}+\dfrac{2b+c+a}{\sqrt{2}}+\dfrac{2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4}{\sqrt{2}}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1006,0,0;0,1006,0;0,0,1006\right)\)

12 tháng 3 2017

Ta có:

\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)

Suy ra  \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:

\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)

Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy:   \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)

\(\Rightarrow\)  \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\)  (do  \(a,b,c>0\)  )

nên   \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)

\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

\(\Rightarrow\) \(đpcm\)

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Thay vao đc \(a+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

lm Tương tụ r quy đòng nha bạn

5 tháng 6 2017

bạn sẽ tính đc \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)

Ấy ,,,vi diệu ko,,,,rồi thay tiếp vào \(a+2=\sqrt{a}^2+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

bạn lm tương tự r quy đồng,,OK??

~ Hóa ra là tình yêu phút chốc, cứ tin rắng ngày mai người sẽ thấy ~

13 tháng 12 2020

hello nha

13 tháng 12 2020

2k? vậy ạ

28 tháng 8 2020

Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)

Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)

 Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)

Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\)\(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)

Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\)\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)