Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Đẳng thức xảy ra khi a = b = c
Áp dụng BĐT Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Cộng vế với vế:
\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)
\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)
Dấu "=" xảy ra khi \(a=b=c\)
Để dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)
\(VT=\frac{xy}{z^2+2xy}+\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}\)
\(2VT=\frac{2xy}{z^2+2xy}+\frac{2yz}{x^2+2yz}+\frac{2zx}{y^2+2xz}=1-\frac{z^2}{z^2+2xy}+1-\frac{x^2}{x^2+2yz}+1-\frac{y^2}{y^2+2xz}\)
\(2VT=3-\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)\)
\(2VT\le3-\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=3-\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)
\(\Rightarrow VT\le1\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)
\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)
Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\) \(\left(1\right)\)
Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)
\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)
\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\) (Do a2+b2+c2=1) \(\left(2\right)\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\) Tự chứng minh \(\left(3\right)\)
Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)
Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
\(VT=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
\(VT\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{24\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}=\frac{10}{3}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{bc+a^2}{a+b}+\frac{ac+b^2}{b+c}+\frac{ab+c^2}{a+c}\ge\)a+b+c
<=>\(\frac{bc+a^2}{a+b}-a+\frac{ac+b^2}{b+c}-b+\frac{ab+c^2}{a+c}-c\ge0\)
<=>\(\frac{b\left(c-a\right)}{a+b}+\frac{c\left(a-b\right)}{b+c}+\frac{a\left(b-c\right)}{a+c}\ge0\)
<=>\(\frac{b\left(b+c\right)\left(a+c\right)\left(a-c\right)}{\left(a+b\right)\left(c+c\right)\left(a+c\right)}\)+\(\frac{c\left(a+c\right)\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a\left(a+b\right)\left(b-c\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{b^2c^2-b^2a^2+bc^3-a^2bc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^3c-ab^2c+c^2a^2-b^2c^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^2b^2-a^2c^2+ab^3-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{bc^3+a^3c+ab^3-a^2bc-ab^2c-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{2bc^3+2a^3c+2ab^3-2a^2bc-2ab^2c-2abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)>=0
<=>\(\frac{bc\left(c-a\right)^2+ac\left(a-b\right)^2+ab\left(b-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đung voi moi a,b,c >0)
Dấu ''='' xay ra khi a=b=c
Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)
\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)
\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)
\(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)
\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)
Ta có: \(\frac{2a^3}{a^6+bc}\le\frac{2a^3}{2a^3\sqrt{bc}}=\frac{1}{\sqrt{bc}}\\ \)
CMTT: \(\frac{2b^3}{b^6+ca}\le\frac{1}{\sqrt{ca}}\)
\(\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}\)\(=\) \(\frac{\sqrt{bc}}{bc}+\frac{\sqrt{ac}}{ac}+\frac{\sqrt{ab}}{ab}\)
\(\le\frac{a+c}{2ac}+\frac{b+c}{2bc}+\frac{a+b}{2ab}=\frac{2\left(ab+bc+ca\right)}{2abc}=\frac{ab+bc+ca}{abc}\) \(\le\frac{a^2+b^2+c^2}{abc}=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\left(đpcm\right)\)
Dấu bằng xảy ra khi : a = b = c =1