K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(=\frac{1+b+bc}{bc+b+1}\)

\(=1\)

14 tháng 1 2018

Xét : a/ab+a+1 = a/ab+a+abc = 1/b+bc+1

        c/ac+c+1 = bc/abc+bc+b = bc/bc+b+1

=> S = 1+b+bc/bc+b+1 = 1

Vậy S = 1

Tk mk nha

4 tháng 9 2020

Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được 

\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)

\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)

Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)

4 tháng 9 2020

Cách trâu bò :

Ta có : 

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)

+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)

\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)

Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )

6 tháng 2 2018

Ta có: \(M=\frac{2010a}{ab+2010a+2010}+\frac{b}{bc+b+2010}+\frac{c}{ac+c+1}\)

Thế: abc = 2010 ta được:

\(M=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(\Leftrightarrow\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{ab}{ab\left(c+1+ac\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Leftrightarrow\frac{a^2bc+ab+abc}{ab\left(1+ac+c\right)}=\frac{ab\left(ac+1+c\right)}{ab\left(1+ac+c\right)}=1\)

Vậy \(M=1\)

14 tháng 3 2019

\(M=\frac{2004a}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(M=\frac{2004a}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)

\(M=\frac{2004ac+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{a^2bc^2+abc+abc^2}{abc\left(ac+c+1\right)}=\frac{abc\left(ac+1+c\right)}{abc\left(ac+c+1\right)}=1\)

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2

30 tháng 3 2020

M=1 khi và chỉ khi abc=1

30 tháng 3 2020

Áp dụng giả thiết từ đề bài :

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)

Vậy M = 1

10 tháng 9 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) <=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{a^2b}+\frac{3}{ab^2}=-\frac{1}{c^3}\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)

<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Khi đó, A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

10 tháng 9 2020

Xét: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

Ta có đẳng thức sau: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

(Đẳng thức này chứng minh rất dễ nha, chỉ cần bung hết ra là được)

Vậy ta thế \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\)vào đẳng thức:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\)

\(=\frac{3}{abc}\)Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)---> Thế cái này vào A:

\(\Rightarrow A=abc.\frac{3}{abc}=3\)

Xoooooooong !!!!! :)))

21 tháng 9 2017

Mk chiu mk mới lớp 6 thui huhu 

Nhưng chúc bn hok giỏi