Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ a/dung bđt Cauchy - Schwarz dạng phân thức: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}=\frac{3}{4}\)
2/ a/dung bđt bunhiacopxki :
\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3\cdot2\left(a+b+c\right)=6\cdot6=36\)
=> \(S\le6\)
Áp dụng BĐT
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a^2+b^2+c^2\ge\dfrac{3^2}{3}=3\)
Theo BĐT Bunhiacốpxki ta có:
\(1.\sqrt{a^2+3}+1.\sqrt{b^2+3}+1.\sqrt{c^2+3}\ge\sqrt{\left(1+1+1\right)\left(a^2+b^2+c^2+9\right)}\ge\sqrt{3.\left(3+9\right)}=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\frac{a^2}{\sqrt{3a^2+8b^2+12ab+2ab}}\ge\frac{a^2}{\sqrt{3a^2+9b^2+12ab+a^2+b^2}}=\frac{a^2}{\sqrt{\left(2a+3b\right)^2}}=\frac{a^2}{2a+3b}\)
\(\Rightarrow VT\ge\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{1}{5}\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)
\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)
Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)
\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)
\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)
Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)
\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)
\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)
\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=2\)
quà à k có nhé :))
haizz mà cứ giải đi rồi u sẽ đc thở :)