Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).
Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).
Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).
\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).
Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\); \(9t^3-9t^2+4t+12>4t+12>0\).
Nên \(P\ge\dfrac{28}{9}\).
Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.
Vậy...
bạn có thể vào mục câu hỏi tương tự
http://olm.vn/hoi-dap/question/162856.html
\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
Ta có :
\(\frac{a^2}{a+b}=\frac{a\left(a+b\right)-ab}{a+b}=a-\frac{ab}{a+b}\text{≥}a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự : \(\hept{\begin{cases}\frac{b^2}{b+c}\text{≥}b-\frac{\sqrt{bc}}{2}\left(2\right)\\\frac{c^2}{c+a}\text{≥}c-\frac{\sqrt{ac}}{2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2)(;(3) lại ta được :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\text{≥}a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ac}}{2}\)
\(\Leftrightarrow A\text{≥}\left(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\right)+\left(\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ac}}{2}\right)\)
Lại lại có : \(a+b+c\text{≥}\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (tự chứng minh)
\(\Rightarrow a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\text{≥}0\)
Nên \(A\text{≥}\frac{1}{2}\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=\frac{1}{2}\)có GTNN là 1/2
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{3}{4}\). (1)
Đặt \(\sqrt{a^2+b^2+c^2}=t\Rightarrow\sqrt{\dfrac{4}{3}}\le t\le2\).
\(\dfrac{3\sqrt{a^2+b^2+c^2}}{4}+\dfrac{ab+bc+ca}{2}=\dfrac{3t}{4}+\dfrac{4-2t^2}{4}=\dfrac{\left(2-t\right)\left(2t+1\right)}{4}+\dfrac{3}{2}\ge\dfrac{3}{2}\). (2)
Cộng vế với vế của (1), (2) ta được \(P\ge\dfrac{9}{4}\).
...