Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 so a,b,c khac 0 thoa man ab/a+b=bc/b+c=ca/c+a
Tinh gia tri cua bieu thuc M=ab+bc+ca/a^2+b^2+c^2
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)
=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))
=> ac + bc - ab - ac = 0
=> bc - ab = 0
=> b(c - a) = 0
Mà b \(\ne0\) nên c - a = 0 => c = a
Tương tự ta có: a = b
Từ đó có: a = b = c
Thay vào M được:
\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)
Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)
\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)
Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)
\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)
Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1
Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5ab+ac2=bc+ba3=ca+cb4=2bc5
ab+ac2=ba+bc3=ca+cb4=2ac3ab+ac2=ba+bc3=ca+cb4=2ac3
Do đó 2ab1=2bc5⇒a1=c5⇒a3=c152ab1=2bc5⇒a1=c5⇒a3=c15
2bc5=2ac3⇒b5=a32bc5=2ac3⇒b5=a3
Do vậy a3=b5=c15
Từ \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{c}{ca}+\dfrac{a}{ca}\)
\(\Rightarrow\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{b}+\dfrac{1}{a}=\dfrac{1}{c}+\dfrac{1}{b}\\\dfrac{1}{c}+\dfrac{1}{b}=\dfrac{1}{a}+\dfrac{1}{c}\\\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{b}+\dfrac{1}{a}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\\\dfrac{1}{c}=\dfrac{1}{b}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Rightarrow a=b=c\)
Khi đó: \(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{1\cdot1+1\cdot1+1\cdot1}{1^2+1^2+1^2}=\dfrac{3}{3}=1\)
thank nha