Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
Ta có \(\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{bc}{a+b}}.\sqrt{\frac{bc}{a+c}}\le\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế rồi rút gọn ta được \(VT\le\frac{a+b+c}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi a= b=c=1/3
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)
Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
Tương tự, ta có
\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)
Cộng vế theo vế của 3 bđt ta được đpcm
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)
\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si :
\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)
Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :
\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)
\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)