Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{a^2+b^2}=z\\\sqrt{b^2+c^2}=x\\\sqrt{c^2+a^2}=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=z^2\\b^2+c^2=x^2\\c^2+a^2=y^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{z^2+x^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
Điều kiện đề bài thành: \(x+y+z=3\sqrt{2}\)
Ta có:
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
\(\ge\dfrac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\dfrac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\dfrac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)
\(=\dfrac{y^2+z^2-x^2}{2\sqrt{2}x}+\dfrac{z^2+x^2-y^2}{2\sqrt{2}y}+\dfrac{x^2+y^2-z^2}{2\sqrt{2}z}\)
\(=\dfrac{1}{2\sqrt{2}}\left(\dfrac{y^2+z^2}{x}+\dfrac{z^2+x^2}{y}+\dfrac{x^2+y^2}{z}-x-y-z\right)\)
\(\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{4\left(x+y+z\right)^2}{2\left(x+y+z\right)}-x-y-z\right)\)
\(=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{1}{2\sqrt{2}}.3\sqrt{2}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(x=y=z=\sqrt{2}\) hay \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(a^2+\frac{1}{b^2}\right)(1+1)\geq (a+\frac{1}{b})^2\)
\(\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{a+\frac{1}{b}}{\sqrt{2}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{d^2}}+\sqrt{d^2+\frac{1}{a^2}}\geq \frac{1}{\sqrt{2}}(a+b+c+d+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})\)
Mặt khác theo BĐT Cauchy:
\(a+\frac{1}{a}\geq 2; b+\frac{1}{b}\geq 2; c+\frac{1}{c}\geq 2; d+\frac{1}{d}\geq 2\)
\(\Rightarrow \text{VT}\geq \frac{1}{\sqrt{2}}.8=4\sqrt{2}\)
Vậy giá trị nhỏ nhất của biểu thức là $4\sqrt{2}$. Dấu bằng xảy ra khi $a=b=c=d=1$
\(H=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(\dfrac{3}{2}\right)^2+\dfrac{81}{\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)
Chắc đề bị nhầm rồi.
\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)
\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)
Lời giải:
\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)
\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)
\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\)
\(\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)
Áp dụng BĐT AM-GM:
\(\frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}(\frac{b}{a+b}+\frac{c}{a+c})\)
Hoàn toàn tương tự:
\(\frac{1}{\sqrt{b^2+1}}=\sqrt{\frac{ac}{(b+a)(b+c)}}\leq \frac{1}{2}(\frac{a}{b+a}+\frac{c}{b+c})\)
\(\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}(\frac{a}{c+a}+\frac{b}{b+c})\)
Cộng theo vế:
\(\Rightarrow \frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\leq \frac{1}{2}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})=\frac{3}{2}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$
Ko lq nhưng ta chuẩn hóa \(a+b+c=3\). So:
\(M\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{3}{2}\)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)
Áp dụng BĐT AM-GM:
\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)
\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)
Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)
Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$
Bài 2:
Áp dụng BĐT Cauchy-Schwarz:
\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)
Áp dụng BĐT AM-GM:
\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)
\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)
Cộng những BĐT vừa cm được ở trên với nhau:
\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)
Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)
cái kia là \(3\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
\(\left(a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}\right)\left(1+3+5\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}\ge a+b+c\)
\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{1}{a}+\dfrac{3^2}{b}+\dfrac{5^2}{c}}\)
\(\Rightarrow P\ge\dfrac{2}{3}\left(a+b+c\right)+3\sqrt{\dfrac{\left(1+3+5\right)^2}{a+b+c}}=\dfrac{2}{3}\left(a+b+c\right)+\dfrac{27}{\sqrt{a+b+c}}\)
\(\Rightarrow P\ge\dfrac{1}{2}\left(a+b+c\right)+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{27}{2\sqrt{a+b+c}}+\dfrac{1}{6}\left(a+b+c\right)\)
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{27^2\left(a+b+c\right)}{2^3\left(a+b+c\right)}}+\dfrac{1}{6}.9=15\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;3;5\right)\)