K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

BĐT ĐÚNG K BN

18 tháng 1 2018

chac dung

2 tháng 2 2017

trước hết ta cần chứng minh \(\frac{19b^3-a^3}{ab+5a^2}\le4b-a\left(1\right)\)

\(\left(1\right)\Leftrightarrow19b^3-a^3\le\left(4b-a\right)\left(ab+5a^2\right)\left(ab+5a^2>0\right)\)

phá ngoặc và biến đổi thành bất đẳng thức quen thuộc\(a^3+b^3\ge\left(a+b\right)ab\)với a,b dương

để cm bất đẳng thức này ta cần biến đổi tương đương thành\(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b)

chứng minh tương tự ta có VT\(\le\)4b-a+4c-b+4a-c\(=\)3(a+b+c)

để tham khảo thêm bạn có thể vào toán học tuổi trẻ số 440

9 tháng 7 2019

Cần chứng minh: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)

Thật vậy: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\Leftrightarrow\left(4b-a\right)\left(ab+5b^2\right)-19b^3+a^3\ge0\)

\(\Leftrightarrow4ab^2+20b^3-a^2b-5ab^2-19b^3+a^3\ge0\)

\(\Leftrightarrow\left(a^3+b^3\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

"=" khi a=b

Tương tự: \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b;\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)

Cộng theo vế: 

\(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le4b-a+4c-b+4a-c=3\left(a+b+c\right)=3\)

Dấu "=" xảy ra khi a=b=c=1/3

3 tháng 2 2018

Chuẩn hóa: a+b+c=3k

\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)

Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3

ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)

Ta CM BĐT:

\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)

CMTT\(\Rightarrow\)ĐPCM

20 tháng 2 2020

\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)

( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )

Dấu "=" \(\Leftrightarrow a=b\)

+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c

\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)

Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

2 tháng 2 2020

\(P=\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\)

\(\ge\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{9\left(a+b+c\right)^2}{ab+bc+ca}\)

\(=\left[\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\right]+\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+18\)

\(\ge2+8+18=28\)

Đẳng thức xảy ra khi \(a=b=c\)

\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)

Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)

\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)

P min = ... khi a=b=c = 1