K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a+\dfrac{1}{4a}\text{ ≥}2\sqrt{a.\dfrac{1}{4a}}=2.\dfrac{1}{2}=1\)

\(b+\dfrac{1}{4b}\text{ ≥}2\sqrt{b.\dfrac{1}{4b}}=2.\dfrac{1}{2}=1\)

\(c+\dfrac{1}{4c}\text{ ≥}2\sqrt{c.\dfrac{1}{4c}}=2.\dfrac{1}{2}=1\)

\(a+b+c+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥}3\)

\(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{ ≥}3+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{ ≥ }3+\dfrac{3}{4}.\dfrac{\left(1+1+1\right)^2}{a+b+c}=3+\dfrac{3}{4}.\dfrac{9}{a+b+c}\text{ ≥}3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}=\dfrac{15}{2}\)\(A_{MIN}=\dfrac{15}{2}."="\text{⇔}a=b=c=\dfrac{1}{2}\)

25 tháng 7 2018

\(H=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

\(\ge\sqrt{\left(\dfrac{3}{2}\right)^2+\dfrac{81}{\left(\dfrac{3}{2}\right)^2}}=\dfrac{3\sqrt{17}}{2}\)

28 tháng 10 2018

@Akai Haruma chị giúp e với

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

Ta có:

\(A=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)

\(=(a+1)-\frac{b^2(a+1)}{b^2+1}+(b+1)-\frac{c^2(b+1)}{c^2+1}+(c+1)-\frac{a^2(c+1)}{a^2+1}\)

\(=(a+b+c+3)-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}\)

\(=6-\underbrace{\left(\frac{b^2(a+1)}{b^2+1}+\frac{c^2(b+1)}{c^2+1}+\frac{a^2(c+1)}{a^2+1}\right)}_{M}(*)\)

Áp dụng BĐT AM-GM:

\(M\leq \frac{b^2(a+1)}{2b}+\frac{c^2(b+1)}{2c}+\frac{a^2(c+1)}{2a}\)

\(\Leftrightarrow M\leq \frac{a+b+c+ab+bc+ac}{2}=\frac{3+ab+bc+ac}{2}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

Do đó: \(M\leq \frac{3+3}{2}=3(**)\)

Từ \((*); (**)\Rightarrow A\geq 6-3=3\)

Vậy \(A_{\min}=3\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Bài 1:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\geq \frac{4}{2ab+a^2+b^2}=\frac{4}{a+b)^2}=4(1)\)

Áp dụng BĐT AM-GM:

\(1=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\Rightarrow \frac{3}{2ab}\geq 6(2)\)

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\geq \frac{(\frac{(a+b)^2}{2})^2}{2}=\frac{1}{8}\) \(\Rightarrow \frac{a^4+b^4}{2}\geq \frac{1}{16}(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq 4+6+\frac{1}{16}=\frac{161}{16}\)

Vậy \(P_{\min}=\frac{161}{16}\). Dấu bằng xảy ra tại $a=b=0,5$

AH
Akai Haruma
Giáo viên
6 tháng 10 2018

Bài 2:
Áp dụng BĐT Cauchy-Schwarz:

\(2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\geq 2. \frac{4}{x^2+y^2+2xy}=\frac{8}{(x+y)^2}=\frac{9}{2}\)

Áp dụng BĐT AM-GM:

\(\frac{80}{81xy}+5xy\geq 2\sqrt{\frac{80}{81}.5}=\frac{40}{9}\)

\(\frac{4}{3}=a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{4}{9}\Rightarrow \frac{1}{81ab}\geq \frac{1}{36}\)

Cộng những BĐT vừa cm được ở trên với nhau:

\(\Rightarrow A\geq \frac{9}{2}+\frac{40}{9}+\frac{1}{36}=\frac{323}{36}\)

Vậy \(A_{\min}=\frac{323}{36}\Leftrightarrow a=b=\frac{2}{3}\)

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

29 tháng 12 2018

a) Câu này biến đổi tương đương

b)

Ta có : \(a^2\left(a-1\right)^2\left(2+a\right)\ge0\Leftrightarrow a^2\left(3a-a^3-2\right)\le0\)

\(\Leftrightarrow3a^3+6-a^5-2a^2\le6\Leftrightarrow\left(3-a^2\right)\left(a^3+2\right)\le6\)

\(\Leftrightarrow\dfrac{1}{a^3+2}\ge\dfrac{3-a^2}{6}\)

Tương tự với b , c ta có :

\(\sum\left(\dfrac{1}{a^3+2}\right)\ge\sum\left(\dfrac{3-a^2}{6}\right)=\dfrac{9-\sum a^2}{6}=1\)

17 tháng 9 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\Rightarrow\dfrac{1}{8}\ge abc\)

Áp dụng BĐT Holder ta có:

\(B=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\ge\left(\sqrt[3]{3\cdot3\cdot3}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}+\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}\right)^3\)

\(=\left(3+2\sqrt[3]{\dfrac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\dfrac{1}{\dfrac{1}{8}}}\right)^3=343\)

Khi \(a=b=c=\dfrac{1}{2}\)

2 tháng 7 2017

b) \(\dfrac{1}{3a+2b+c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{1}{36}\left(\dfrac{3}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\)

Tương tự cho 2 cái kia rồi cộng lại

\(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}.16=\dfrac{8}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\) ... \(\Leftrightarrow a=b=c=\dfrac{3}{16}\)

2 tháng 7 2017

Mik ko hỉu pn ơi, ngay bước đầu ý

23 tháng 7 2018

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)

\(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)

Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)

\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)

\(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)

23 tháng 7 2018

Cảm ơn bạn nhiều lắm