K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

áp dụng BĐT AM-GM

\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)

tương tự ta có

\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)

cộng từng vế của BĐT cho nhau

\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)

mặt khác áp dụng BĐT AM-GM với 3 số a,b,c không âm

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow C\le1\)

maxC=1, dấu"=" xảy ra khi a=b=c=1

23 tháng 4 2017

áp dụng BĐT AM-GM

\(a^3+b^3+1\ge3ab\Rightarrow\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{3ab}\)

tương tự ta có

\(\dfrac{1}{b^3+c^3+1}\le\dfrac{1}{3bc};\dfrac{1}{a^3+c^3+1}\le\dfrac{1}{3ac}\)

cộng các vế của BĐT cho nhau ta có

\(C\le\dfrac{1}{3ab}+\dfrac{1}{3bc}+\dfrac{1}{3ac}=\dfrac{a+b+c}{3abc}=\dfrac{a+b+c}{3}\)

mặt khác ta áp dụng BĐT AM-GM với 3 số a,b,c không âm

\(a+b+c\ge3\sqrt[3]{abc}=1\)

\(\Rightarrow C\le1\Rightarrow Max_C=1\)

dấu "=" xảy ra khi a=b=c=1

18 tháng 1 2018

đề đúng à

23 tháng 7 2018

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)

\(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)

Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)

\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)

\(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)

23 tháng 7 2018

Cảm ơn bạn nhiều lắm

13 tháng 8 2018

Ta có: \(x^3+y^{ 3}=\left(x+y\right)\left(x^2-xy+y^2\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy,\forall x,y\ge0\)

Áp dụng:

\(\sum_{cyc}\dfrac{1}{a^3+b^3+abc}\le\sum_{cyc}\dfrac{1}{\left(a+b\right)ab+abc}=\sum_{cyc}\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

25 tháng 7 2018

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=\left(x+y\right)xy\)( \(\forall x,y\ge0\) )

Áp dụng: \(\sum\dfrac{1}{a^3+b^3+abc}\le\dfrac{1}{\left(a+b\right)ab+abc}=\sum\dfrac{1}{ab\left(a+b+c\right)}=\dfrac{a+b+c}{abc\left(a+b+c\right)}=\dfrac{1}{abc}\)

\("="\Leftrightarrow a=b=c\)

24 tháng 1 2018

ta chứng minh đc \(x^3+y^3\ge xy\left(x+y\right)\)

thay vào + biến đổi ta có đpcm

đẳng thúc xảy ra khi a=b=c

lol!!!

4 tháng 4 2017

tách như nầy nè

\(\dfrac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\dfrac{1}{2ab+2b+2}=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}\right)\)

10 tháng 8 2018

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(=\dfrac{abc}{a^3\left(b+c\right)}+\dfrac{abc}{b^3\left(a+c\right)}+\dfrac{abc}{c^3\left(a+b\right)}\)

\(=\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{ab}{c^2\left(a+b\right)}\)

\(=\dfrac{b^2c^2}{a^2bc\left(b+c\right)}+\dfrac{a^2c^2}{ab^2c\left(a+c\right)}+\dfrac{a^2b^2}{abc^2\left(a+b\right)}\)

\(Cauchy-Schwarz:\)

\(VT\ge\dfrac{\left(bc+ac+ab\right)^2}{abc\left[a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)\right]}\)

\(=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)

\(AM-GM:\)

\(ab+bc+ca\ge\sqrt[3]{\left(abc\right)^2}=3\)

\(\Rightarrow VT\ge\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải khác:

Áp dụng BĐT AM-GM:

\(\frac{1}{a^3(b+c)}+\frac{a(b+c)}{4}\geq 2\sqrt{\frac{1}{4a^2}}=\frac{1}{a}=\frac{abc}{a}=bc\)

\(\frac{1}{b^3(a+c)}+\frac{b(a+c)}{4}\geq 2\sqrt{\frac{1}{4b^2}}=\frac{1}{b}=\frac{abc}{b}=ac\)

\(\frac{1}{c^3(a+b)}+\frac{c(a+b)}{4}\geq 2\sqrt{\frac{1}{4c^2}}=\frac{1}{c}=\frac{abc}{c}=ab\)

Cộng theo vế và rút gọn:

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}+\frac{ab+bc+ac}{2}\ge ab+bc+ac\)

\(\Rightarrow \frac{1}{a^3(b+c)}+\frac{1}{b^3(a+c)}+\frac{1}{c^3(a+b)}\geq \frac{ab+bc+ac}{2}\geq \frac{3\sqrt[3]{a^2b^2c^2}}{2}=\frac{3}{2}\) (AM_GM)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

18 tháng 6 2018

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)

18 tháng 6 2018

vầng, cảm ơn nhiều ạ !