Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sum\sqrt{\dfrac{ab}{c+ab}}=\sum\sqrt{\dfrac{ab}{c^2+ca+cb+ab}}\)
\(=\sum\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{c}{b+c}\right)\)
\(=\dfrac{1}{2}.3=\dfrac{3}{2}\)
Cần điều kiện a;b;c dương
\(\dfrac{bc}{\sqrt{a.1+bc}}=\dfrac{bc}{\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\)
Tương tự: \(\dfrac{ca}{\sqrt{b+ca}}\le\dfrac{1}{2}\left(\dfrac{ca}{a+b}+\dfrac{ca}{b+c}\right)\) ; \(\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Cộng vế với vế:
\(A\le\dfrac{1}{2}\left(\dfrac{bc+ca}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ca+ab}{b+c}\right)=\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Bài 1:
Vì $x+y+z=1$ nên:
\(Q=\frac{x}{x+\sqrt{x(x+y+z)+yz}}+\frac{y}{y+\sqrt{y(x+y+z)+xz}}+\frac{z}{z+\sqrt{z(x+y+z)+xy}}\)
\(Q=\frac{x}{x+\sqrt{(x+y)(x+z)}}+\frac{y}{y+\sqrt{(y+z)(y+x)}}+\frac{z}{z+\sqrt{(z+x)(z+y)}}\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(x+y)(x+z)}=\sqrt{(x+y)(z+x)}\geq \sqrt{(\sqrt{xz}+\sqrt{xy})^2}=\sqrt{xz}+\sqrt{xy}\)
\(\Rightarrow \frac{x}{x+\sqrt{(x+y)(x+z)}}\leq \frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:
\(Q\leq \frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+ \frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Vậy $Q$ max bằng $1$
Dấu bằng xảy ra khi $x=y=z=\frac{1}{3}$
Bài 2:
Vì $x+y+z=1$ nên:
\(\text{VT}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)
\(\text{VT}=\frac{(x+y+z)^2-x^2}{(x+y)(x+z)}+\frac{(x+y+z)^2-y^2}{(y+z)(y+x)}+\frac{(x+y+z)^2-z^2}{(z+x)(z+y)}\)
\(\text{VT}=\frac{(y+z)[(x+y)+(x+z)]}{(x+y)(x+z)}+\frac{(x+z)[(y+z)+(y+x)]}{(y+z)(y+x)}+\frac{(x+y)[(z+x)+(z+y)]}{(z+x)(z+y)}\)
Áp dụng BĐT AM-GM:
\(\text{VT}\geq \frac{2(y+z)\sqrt{(x+y)(x+z)}}{(x+y)(x+z)}+\frac{2(x+z)\sqrt{(y+z)(y+x)}}{(y+z)(y+x)}+\frac{2(x+y)\sqrt{(z+x)(z+y)}}{(z+x)(z+y)}\)
\(\Leftrightarrow \text{VT}\geq 2\underbrace{\left(\frac{y+z}{\sqrt{(x+y)(x+z)}}+\frac{x+z}{\sqrt{(y+z)(y+x)}}+\frac{x+y}{\sqrt{(z+x)(z+y)}}\right)}_{M}\)
Tiếp tục AM-GM cho 3 số trong ngoặc lớn, suy ra \(M\geq 3\)
Do đó: \(\text{VT}\geq 2.3=6\) (đpcm)
Dấu bằng xảy ra khi $3x=3y=3z=1$
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.
-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiết lập 2 BĐT tương tự:
\(\dfrac{b}{\sqrt{1+b^2}}\le\dfrac{1}{4}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{1+c^2}}\le\dfrac{1}{4}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)