Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)
Đơn giản là kiên nhẫn tính toán và tách biểu thức:
\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)
Sau đó Cô-si cho từng ngoặc là được
Lời giải:
Áp dụng BĐT AM-GM cho các số dương:
\(a^2+bc\geq 2\sqrt{a^2bc}; b^2+ac\geq 2\sqrt{b^2ac}; c^2+ab\geq 2\sqrt{c^2ab}\)
Do đó:
\(\text{VT}=\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}\)
hay \(\text{VT}\leq \frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}(*)\)
Tiếp tục áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} \sqrt{bc}\leq \frac{b+c}{2}\\ \sqrt{ac}\leq \frac{a+c}{2}\\ \sqrt{ab}\leq \frac{a+b}{2}\end{matrix}\right.\Rightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq a+b+c(**)\)
Từ \((*);(**)\Rightarrow \text{VT}\leq \frac{a+b+c}{2abc}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
Áp dụng Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{7}{ab+bc+ca}\)
\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}+\dfrac{7}{\dfrac{\left(a+b+c\right)^2}{3}}=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
Ta có \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(\Rightarrow ab+bc+ca=abc\)
Xét \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\)
\(\Leftrightarrow\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)
\(\Leftrightarrow\dfrac{a^3}{a^2+ab+bc+ca}+\dfrac{b^3}{b^2+ab+bc+ca}+\dfrac{c^3}{c^2+ab+bc+ca}\)
\(\Leftrightarrow\dfrac{a^3}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b^3}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{c^3}{c\left(b+c\right)+a\left(b+c\right)}\)
\(\Leftrightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\\\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3b}{4}\\\dfrac{b^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{c+a}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3b}{4}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{4\left(a+b+c\right)}{8}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}+\dfrac{a+b+c}{2}\ge\dfrac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{a+b+c}{2}\)
\(\Rightarrow\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(b+c\right)\left(c+a\right)}\ge\dfrac{a+b+c}{4}\)
\(\Leftrightarrow\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=3\)
p/s: bài này em nhớ em đã giải cho anh ròi mà ta =))
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\)
\(\Rightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}+\dfrac{7}{ab+ac+bc}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\) (1)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab+bc+ac}+\dfrac{1}{ab+bc+ac}\ge\dfrac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge21+9=30\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Chứng minh : \(\left(x^2+y^2+z^2\right)^2\ge3\left(x^3y+y^3z+z^3x\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(x^2-y^2-xy-xz+2yz\right)^2+\left(y^2-z^2-yz-xy+2xz\right)^2+\left(z^2-x^2-xz-yz+2xy\right)^2\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a}{ab+1}=a-\dfrac{a^2b}{ab+1}\ge a-\dfrac{a^2b}{2\sqrt{ab}}=a-\dfrac{\sqrt{a^3b}}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b}{bc+1}\ge b-\dfrac{\sqrt{b^3c}}{2};\dfrac{c}{ca+1}\ge c-\dfrac{\sqrt{c^3a}}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge3-\dfrac{1}{2}\left(\sqrt{a^3b}+\sqrt{b^3c}+\sqrt{c^3a}\right)\ge3-\dfrac{3}{2}=\dfrac{3}{2}\)
Xảy ra khi \(a=b=c=1\)
Dự đoán GTNN của P là đạt 3 tại \(a=b=c=\dfrac{1}{2}\), vậy ta sẽ C/m BĐT
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-2\left(a+b+c\right)\ge3\)
Từ giả thuyết suy ra tồn tại các số \(x;y;z>0\) sao cho
\(a=\dfrac{x}{y+z},b=\dfrac{y}{z+x},c=\dfrac{z}{x+y}\)
BĐT cần chứng minh trở thành
\(\dfrac{y+z}{x}+\dfrac{z+x}{y}+\dfrac{x+y}{z}\ge2\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)+3\)
Để ý rằng:
\(\dfrac{y+z}{x}+\dfrac{z+x}{y}+\dfrac{x+y}{z}\ge4\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\)
Nên BĐT sẽ đúng nếu ta C/m được
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
Nhưng đây chính là BĐT Nesbitt quen thuộc, vì vậy BĐT ban đầu đúng
Songoku cảm ơn bn nhiều
Bây h mk cũng có vài câu nữa nek