K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)(1)

Vì \(a;b;c>0\Rightarrow a+b+c>0\) (2)

Do đó ta cần phải CM : \(a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)Luôn đúng (3)

Từ (2) ; (3) => BĐT (1) đúng

\(\Rightarrow a^3+b^3+c^3\ge3abc\) đúng (ĐPCM)

16 tháng 4 2017

e cảm ơn ạ

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

2 tháng 11 2016

Ta có a,b,c dương nên ta áp dụng Bđt Cô-si ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi \(a=b=c\)

Đpcm

2 tháng 11 2016

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a^2-2ab+b^2\right)\left(b^2-2bc+c^2\right)\left(c^2-2ac+a^2\right)=0\)

\(\Rightarrow\left(a+b+c\right)\frac{1}{2}\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0.\)

\(\left(a-b\right)^2\ge0\)

\(\left(b-c\right)^2\ge0\)

\(\left(c-a\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a-b=b-c=c-a\)

\(\Rightarrow a=b=c\left(dpcm\right)\)

 

 

22 tháng 3 2018

Xét hiệu:       \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)\(=0\)   (do  a+b+c = 0)

\(\Rightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\)\(a^3+b^3+c^3=3abc\)  (đpcm)

30 tháng 8 2015

Xét hiệu:

a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc

=(a+b)3+c3-3ab.(a+b+c)

=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab.(a+b+c)

=(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)

=(a+b+c)(a2-ab+b2-ac-bc+c2)

ta lại có:

2.(a2-ab+b2-ac-bc+c2)

=2a2-2ab+2b2-2ac-2bc+2c2

=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2

=(a-b)2+(b-c)2+(a-c)2\(\ge\)0 với mọi a,b,c

=>2.(a2-ab+b2-ac-bc+c2)\(\ge\)0

<=>a2-ab+b2-ac-bc+c2\(\ge\)0

ta có thêm a,b,c\(\ge\)0

=>(a+b+c)(a2-ab+b2-ac-bc+c2)\(\ge\)0 với mọi a,b,c

=>a3+b3+c3-3abc\(\ge\)0

<=>a3+b3+c3\(\ge\)3abc

 

30 tháng 8 2015

Lắm bạn hỏi câu này quá mình giải 1 câu sau các bạn vào câu hỏi tương tự nha

Xét Hiệu : a^3 + b^3 + c^3 - 3abc

= ( a + b )^3 - 3ab(a+b) - 3abc + c^3 

=  ( a + b + c )^3 - 3 ( a+  b ).c ( a + b + c ) - 3ab ( a + b+  c )

= ( a + b + c )^3 - 3(a+b+c)( ac+ bc + ab )

= ( a+  b+  c )[ ( a + b + c )^2 - 3ab - 3ac - 3bc ) 

= ( a+  b + c )( a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - 3ac - 3bc - 3ab )

=(a+  b+ c )( a^2 + b^2 + c^2 - ab - bc - ac )

= 2 ( a + b +c )(2a^2 + 2b^2 + 2c^2 - 2ab- 2bc- 2ac ) 

= 2 (a+b+c) [ a^2 - 2ab + b^2 + c^2 - 2bc + b^2 + a^2 - 2ac + c^2 )] 

= 2 ( a+  b + c )[ ( a - b)^2 + ( c-  b)^2 + ( c -a  )^2 ]  >=0 vì :

a ; b; c >0  => a+  b+ c >= 0 

( a- b)^2 >=0 

( b- c )^2 >=0 

( c-a )^2 >=0 

=> ( a -b )^2 + ( b- c)^2 + ( c- a)^2 >=0 

=> a^3 +b^3 + c^3 - 3abc >=0 

=> a^3 + b^3 + c^3 >= 3abc => ĐPCM 

12 tháng 4 2017

\(A=a^3+b^3+c^3-3abc\)\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+c^2\right)\right]\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)

Dế thấy: \(\left\{{}\begin{matrix}a+b+c>0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2>0\end{matrix}\right.\)(do a,b,c là 3 số dương khác nhau đôi một)

\(A=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]>0\)