\(T=\dfrac{ab}{a^2+ab+b^2}+\dfrac{bc}{b^2+bc+c^2}+\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2021

Đề bài có nhầm lẫn gì ko nhỉ?

\(T=\dfrac{ab}{a^2+b^2+ab}+\dfrac{bc}{b^2+c^2+2bc}+\dfrac{ca}{c^2+a^2+ca}\le\dfrac{ab}{2ab+ab}+\dfrac{bc}{2bc+bc}+\dfrac{ca}{2ca+ca}=1\)

13 tháng 5 2021

kh bt nx

 

19 tháng 11 2018

1) Áp dụng bđt Cauchy:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge2\sqrt{\dfrac{1}{a^2b^2}}=\dfrac{2}{ab}\)

Xong

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(a+b+c=abc\)

\(\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=a^2bc+bc\)

\(\Rightarrow (a+b)(a+c)=bc(a^2+1)\)

\(\Rightarrow \frac{a}{\sqrt{bc(a^2+1)}}=\frac{a}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\) (theo BĐT AM-GM ngược dấu)

Hoàn toàn tương tự:

\(\frac{b}{\sqrt{ca(b^2+1)}}\leq \frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right)\)

\(\frac{c}{\sqrt{ab(c^2+1)}}\leq \frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)

Cộng theo vế những BĐT thu được ở trên ta có:

\(S\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Vậy \(S_{\max}=\frac{3}{2}\Leftrightarrow a=b=c=\sqrt{3}\)

7 tháng 1 2018

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\end{matrix}\right.\)\(\Rightarrow x+y+z=xyz\)

\(\Rightarrow P=xy+yz+xz-\sqrt{x^2+1}-\sqrt{y^2+1}-\sqrt{z^2+1}\)

Khi \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow x=y=z=\sqrt{3}\Rightarrow P=3\)

Ta sẽ chứng minh \(P=3\) là giá tri nhỏ nhất của \(P\)

\(\Rightarrow BDT\Leftrightarrow xy+yz+xz-3\ge\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)

Ta có BĐT \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2\)

\(\Leftrightarrow\left(xy+yz+xz\right)^2\ge x^2y^2z^2+2xyz\left(x+y+z\right)\)\(=3\left(x+y+z\right)^2\)

Xét \(VT^2=\left(xy+yz+xz-3\right)^2=\left(xy+yz+xz\right)^2-6\left(xy+yz+xz\right)+9\)

\(\ge3\left(x+y+z\right)^2-6\left(xy+yz+xz\right)+9\)\(=3\left(x^2+y^2+z^2\right)+9\left(1\right)\)

\(VP^2\le\left(1+1+1\right)\left(x^2+y^2+z^2+3\right)=3\left(x^2+y^2+z^2\right)+9\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM. Vậy \(P_{min}=3\Rightarrow a=b=c=\frac{1}{\sqrt{3}}\)

2 tháng 5 2017

Câu 3/ \(\sqrt{\left(x+z\right)^2+\left(y-t\right)^2}+\sqrt{\left(x-z\right)^2+\left(y+t\right)^2}\)

\(\le\sqrt{1+2xz-2yt}+\sqrt{1-2xz+2yt}\)

\(\le\dfrac{1+1+2xz-2yt}{2}+\dfrac{1+1-2xz+2yt}{2}=1+1=2\)

2 tháng 5 2017

Đăng nhiều thế???

5 tháng 6 2018

Em nghĩ đề là a chứ không phải 2a ;v

\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\\ =\dfrac{a}{\sqrt{ab+bc+ac+a^2}}+\dfrac{b}{\sqrt{ab+bc+ac+b^2}}+\dfrac{c}{\sqrt{ab+bc+ac+c^2}}\\ =\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\\ \le\left(\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\right)+\left(\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\right)+\left(\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{2\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{4}\)

Áp dụng bđt : \(\dfrac{1}{xy}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}\)

Dấu "=" xảy ra khi a=b=c=1/căn 3

17 tháng 12 2018

Dự đoán điểm rơi b=c=ka. Ta có:

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT AM-GM: \(\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+b}+\dfrac{a}{a+c}\)

\(\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}=\dfrac{b.\sqrt{\dfrac{2k}{k+1}}}{\sqrt{\left(b+c\right).\dfrac{2k\left(a+b\right)}{k+1}}}\le\dfrac{b}{2}\sqrt{\dfrac{2k}{k+1}}.\left(\dfrac{1}{b+c}+\dfrac{\left(k+1\right)}{2k\left(a+b\right)}\right)\)

\(\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{c}{2}.\sqrt{\dfrac{2k}{k+1}}\left(\dfrac{1}{b+c}+\dfrac{k+1}{2k\left(a+c\right)}\right)\)

\(\Rightarrow VT\le\dfrac{a}{a+b}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{b}{a+b}+\dfrac{a}{a+c}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{c}{a+c}+\sqrt{\dfrac{k}{2k+2}}\)

Tìm k sao cho \(\sqrt{\dfrac{k+1}{8k}}=1\Rightarrow k=\dfrac{1}{7}\)

Do đó trình bày lại bài toán ngắn gọn như sau:

Áp dụng BĐT AM-GM:

\(VT=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{2b}{\sqrt{4\left(b+c\right).\left(b+a\right)}}+\dfrac{2c}{\sqrt{4\left(b+c\right).\left(a+b\right)}}\)

\(\le\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{a+b}+\dfrac{c}{4\left(b+c\right)}+\dfrac{c}{a+c}\)

\(=1+1+\dfrac{1}{4}=\dfrac{9}{4}\)

Dấu = xảy ra khi \(a=7b=7c=\dfrac{7}{\sqrt{15}}\)

15 tháng 1 2019

\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(\dfrac{1}{a}=x;\dfrac{1}{b}=y;\dfrac{1}{c}=z\)\(\Rightarrow x+y+z=3\)

\(VT=\sum\dfrac{xyz}{yz+x^2}\le\sum\dfrac{xyz}{2x\sqrt{yz}}=\dfrac{1}{2}\sum\sqrt{yz}\le\dfrac{1}{2}\sum x=\dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Áp dụng BĐT AM-GM ngược dấu ta có:

\(A=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ac}}=\frac{ab}{\sqrt{c(a+b+c)+ab}}+\frac{bc}{\sqrt{a(a+b+c)+bc}}+\frac{ca}{\sqrt{b(a+b+c)+ac}}\)

\(=\frac{ab}{\sqrt{(c+a)(c+b)}}+\frac{bc}{\sqrt{(a+b)(a+c)}}+\frac{ca}{\sqrt{(b+a)(b+c)}}\)

\(\leq \frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)+\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)+\frac{1}{2}\left(\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)

\(A\leq \frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}(b+a+c)=\frac{1}{2}\)

Vậy \(A_{\max}=\frac{1}{2}\) tại \(a=b=c=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Đặt \(\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)\)

Khi đó: \(xy=b^2; yz=c^2; xz=a^2\). Bài toán trở về dạng:

Cho $x,y,z>0$ thỏa mãn: \(xy+yz+xz=1\)

Tìm GTNN của \(P=x+y+z\)

Thật vậy: Ta đã biết một BĐT quen thuộc theo AM-GM là:

\((x+y+z)^2\geq 3(xy+yz+xz)\)

\(\Rightarrow x+y+z\geq \sqrt{3(xy+yz+xz)}=\sqrt{3}\)

Vậy \(P_{\min}=\sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)

18 tháng 6 2018

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)

18 tháng 6 2018

vầng, cảm ơn nhiều ạ !