Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
Tham khảo: cho a,b,c đôi một khác nhau và khác 0. Biết ab là số nguyên tố và ab/bc=b/c. tìm số abc- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\) hay \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\left(10a+b\right)\left(b+c\right)=\left(a+b\right)\left(10b+c\right)\)
\(10ab+b^2+10ac+bc=10ab+10b^2+ac+bc\)
\(9ac=9b^2\)
\(ac=b^2\)
\(\frac{a}{b}=\frac{b}{c}\)
\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)=\(1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\frac{9a}{a+b}=\frac{9b}{b+c}=>\frac{9a}{9b}=\frac{a+b}{b+c}\)
\(\frac{a}{b}=\frac{a+b}{b+c}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)
=>\(\frac{a}{b}=\frac{b}{c}\)
nếu đúng thì k nka
Ta có : \(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
=> ab + ac = ab + bb
=> ac = bb
=> \(\frac{a}{b}=\frac{b}{c}\left(\text{đpcm}\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.