Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
A B C E F D
a) Co E la trung diem cua AC, FE//BC suy ra F la trung diem AB(duong trung binh )
Co E la trung diem AC, ED//AB suy ra D la trung diem BC(duong trung binh)
b) Co F la trung diem AB (cmt), D la trung diem BC (cmt) suy ra FD la duong trung binh cua tam giac ABC
suy ra FD//=1/2 AC (t/c duong trung binh)
chứng minh đó, bọn bây đui hết rồi ak, đừng ns kết quả ra nữa, ttốn giấy mực olm, đứa nào ko lm ra thì biến
a) \(\Delta\)AEF=\(\Delta\)ECD ( g-c-g) => EF= CD ; DE = AF
\(\Delta\)BFD = \(\Delta\)EDF ( g-c-g) => BF = DE ; BD = EF
=> AF = BE ; BD=CD => dpcm
b) theo a) => DF là đường TB của \(\Delta\) ABC => dpcm
a) TA CÓ :EF//AB
suy ra : góc AEF=gócECD (1)
ED // AB
suy ra :gócCED =gócEAF (2)
TA CÓ :AE = EC (gt) (3)
từ 1,2,3 suy ra tam giác FAE=DEC
suy ra AF=ED (4) và EF=DC (5)
theo bai ta co :ED//AB mà Fthuộc AB nên ED//FB
EF//BC mà Dthuộc BCnên EF//BD
từ trên ta suy ra EFBD là hinh bình hành
suy ra BF=ED (6) và EF=BD (7)
từ 4,6 suy ra AF =BF hay Flà trung điểm của AB
Từ 5,7 suy ra BD=DC hay Dlà trung điểm của BC
b) ta có :AF=DE (câu a) và AF//ED
nên suy ra :AFDE là hình bình hành
suy ra FD//AE (đpcm) và FD=AE
mà AE=EC=1/2AC
nên FD=1/2AC (đpcm)
***tick cho mik nhé **!!!
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét ΔDBFΔDBF và ΔFED:ΔFED:
DF:cạnh chung
ˆBDF=ˆEFDBDF^=EFD^(AB//EF)
ˆBFD=ˆEDFBFD^=EDF^(DE//BC)
=> ΔBDF=ΔEFD(g−c−g)ΔBDF=ΔEFD(g−c−g)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: ˆDAE+ˆAED+ˆEDA=180oDAE^+AED^+EDA^=180o (Tổng 3 góc trong 1 tam giác)
Lại có: ˆAED+ˆDEF+ˆFEC=180oAED^+DEF^+FEC^=180o
Mà ˆDEF=ˆEDADEF^=EDA^(AB//EF)
=>ˆDAE=ˆFECDAE^=FEC^
Xét ΔDAEΔDAE và ΔFEC:ΔFEC:
DA=FE(=BD)
ˆDAE=ˆEFC(=ˆDBF)DAE^=EFC^(=DBF^)
ˆDAE=ˆFECDAE^=FEC^ (cmt)
=>ΔDAE=ΔFEC(g−c−g)ΔDAE=ΔFEC(g−c−g)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm