K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

4 tháng 2 2021

Câu 1:

Ta dễ dàng kiểm tra được \(C\notin\left(d_1\right):2x-3y+12=0\) nên hai đường thẳng \(\left(d_1\right),\left(d_2\right)\) không là đường cao và trung tuyến kẻ từ \(C\).

Không mất tính tổng quát giả sử chúng kẻ từ \(A\)

\(\Rightarrow\left\{{}\begin{matrix}A\in\left(d_1\right)\\A\in\left(d_2\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_A-3y_A+12=0\\2x_A+3y_A=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=-3\\y_A=2\end{matrix}\right.\Rightarrow A\left(-3;2\right)\)

Gọi trung điểm \(BC\) là \(M\) \(\Rightarrow M\in\left(d_2\right)\) \(\Rightarrow M\left(-\dfrac{3}{2}y;y\right)\)\(\Rightarrow\overrightarrow{CM}=\left(-\dfrac{3}{2}y-4;y-1\right)\).

VTPT của \(\left(d_1\right)\) là \(\overrightarrow{n}=\left(2;-3\right)\).

Do \(\left(d_1\right)\) vuông góc \(BC\) nên \(\overrightarrow{CM}=k\overrightarrow{n}\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}y-4=2k\\y-1=-3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-\dfrac{28}{5}\\k=\dfrac{11}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{42}{5};-\dfrac{28}{5}\right)\)

\(\Rightarrow B\left(\dfrac{64}{5};-\dfrac{61}{5}\right)\).

Câu 2: 

\(\left\{{}\begin{matrix}B\in d_1\\B\in d_2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y-1=0\\2x+3y-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=4\end{matrix}\right.\Rightarrow B\left(-3;4\right)\)

Gọi \(M\) là trung điểm \(AC\) \(\Rightarrow M\in d_2\Rightarrow M\left(x;2-\dfrac{2}{3}x\right)\Rightarrow\overrightarrow{AM}=\left(x-1;1-\dfrac{2}{3}x\right)\)

VTPT của \(d_1\) là \(\overrightarrow{n}=\left(1;1\right)\),

Do \(d_1\) vuông góc \(AC\Rightarrow\overrightarrow{AC}=k\overrightarrow{n}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=k\\1-\dfrac{2}{3}x=k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{6}{5}\\k=\dfrac{1}{5}\end{matrix}\right.\Rightarrow M\left(\dfrac{6}{5};\dfrac{6}{5}\right)\)

\(\Rightarrow C\left(\dfrac{7}{5};\dfrac{7}{5}\right)\).

 

 

 

8 tháng 5 2021

\(M=\left(m;8m+4\right)\) là trung điểm AC.

\(\Rightarrow A=\left(2m+5;16m+14\right)\)

Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)

\(\Rightarrow m=-1\)

\(\Rightarrow A=\left(3;-2\right)\)

Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:

\(2x-y+4=0\)

B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)

 

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)

11 tháng 4 2020

Gọi M là trung điểm BC . Ta có :

\(\left\{{}\begin{matrix}x_M=\frac{x_B+x_C}{2}=\frac{1+3}{2}=2\\y_M=\frac{y_B+y_C}{2}=\frac{2-4}{2}=-1\end{matrix}\right.\Rightarrow M\left(2;-1\right)\)

\(\overrightarrow{u_{AM}}=\left(2;-2\right)\Rightarrow\overrightarrow{n_{AM}}=\left(2;2\right)\)

PTTQ của AM : \(2\left(x-0\right)+2\left(y-1\right)=0\)

\(\Leftrightarrow x+y-1=0\)

Chọn A

Tọa độ A là:

\(\left\{{}\begin{matrix}2x+y=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=0\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y-x-y=0-\left(-1\right)\\x+y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Đường cao AH: 2x+y=0

mà BC\(\perp\)AH

nên BC: -x+2y+c=0

Thay x=2 và y=3 vào -x+2y+c=0, ta được:

-2+2*3+c=0

=>c+4=0

=>c=-4

=>BC: -x+2y-4=0

=>x-2y+4=0

Tọa độ M là:

\(\left\{{}\begin{matrix}x-2y+4=0\\x+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2y-4\\2y-4+y+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=2-4=-2\end{matrix}\right.\)

M(-2;1); B(2;3); C(x;y)

M là trung điểm của BC

nên \(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M\\y_B+y_C=2\cdot y_M\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2+x=2\cdot\left(-2\right)=-4\\3+y=2\cdot1=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-6\\y=-1\end{matrix}\right.\)

Vậy: C(-6;-1)